Multivariate joint model under competing risks to predict death of hospitalized patients for SARS‐CoV‐2 infection

医学 多元统计 2019年冠状病毒病(COVID-19) 多元分析 比例危险模型 急诊医学 生存分析 危险系数 内科学 重症监护医学 疾病 统计 置信区间 传染病(医学专业) 数学
作者
Alexandra Lavalley‐Morelle,Nathan Peiffer‐Smadja,Simon B. Gressens,Bérénice Souhail,Alexandre Lahens,Agathe Bounhiol,François‐Xavier Lescure,France Mentré,Jimmy Mullaert
出处
期刊:Biometrical Journal [Wiley]
卷期号:66 (1) 被引量:2
标识
DOI:10.1002/bimj.202300049
摘要

Abstract During the coronavirus disease 2019 (COVID‐19) pandemic, several clinical prognostic scores have been proposed and evaluated in hospitalized patients, relying on variables available at admission. However, capturing data collected from the longitudinal follow‐up of patients during hospitalization may improve prediction accuracy of a clinical outcome. To answer this question, 327 patients diagnosed with COVID‐19 and hospitalized in an academic French hospital between January and July 2020 are included in the analysis. Up to 59 biomarkers were measured from the patient admission to the time to death or discharge from hospital. We consider a joint model with multiple linear or nonlinear mixed‐effects models for biomarkers evolution, and a competing risks model involving subdistribution hazard functions for the risks of death and discharge. The links are modeled by shared random effects, and the selection of the biomarkers is mainly based on the significance of the link between the longitudinal and survival parts. Three biomarkers are retained: the blood neutrophil counts, the arterial pH, and the C‐reactive protein. The predictive performances of the model are evaluated with the time‐dependent area under the curve (AUC) for different landmark and horizon times, and compared with those obtained from a baseline model that considers only information available at admission. The joint modeling approach helps to improve predictions when sufficient information is available. For landmark 6 days and horizon of 30 days, we obtain AUC [95% CI] 0.73 [0.65, 0.81] and 0.81 [0.73, 0.89] for the baseline and joint model, respectively ( p = 0.04). Statistical inference is validated through a simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮光完成签到,获得积分10
刚刚
jimmy发布了新的文献求助10
刚刚
华仔应助hhh采纳,获得10
1秒前
hug完成签到,获得积分10
1秒前
科研通AI5应助cxwong采纳,获得10
1秒前
1秒前
沉敛一生完成签到,获得积分10
1秒前
hhy发布了新的文献求助10
1秒前
starry发布了新的文献求助10
2秒前
Wxd0211发布了新的文献求助10
2秒前
章鱼完成签到,获得积分20
2秒前
2秒前
任医生完成签到,获得积分10
2秒前
3秒前
wyh完成签到,获得积分10
3秒前
lalala完成签到,获得积分10
4秒前
FCH2023完成签到,获得积分10
4秒前
66应助cuihf06采纳,获得10
4秒前
半生完成签到 ,获得积分20
5秒前
锦鲤云间月完成签到,获得积分10
5秒前
5秒前
5秒前
南宫士晋完成签到 ,获得积分10
5秒前
犹豫勇完成签到,获得积分10
6秒前
侦察兵发布了新的文献求助10
6秒前
英姑应助DK采纳,获得10
7秒前
快乐小白菜完成签到,获得积分10
7秒前
joy完成签到,获得积分10
7秒前
7秒前
7秒前
孟春纪事完成签到,获得积分10
8秒前
清爽忆山完成签到,获得积分10
8秒前
小马甲应助轻松的怜容采纳,获得10
8秒前
Grayball应助噢噢采纳,获得10
8秒前
言辞完成签到,获得积分10
8秒前
小柠檬完成签到,获得积分20
8秒前
8秒前
土豆丝完成签到 ,获得积分10
9秒前
念念完成签到,获得积分10
9秒前
乐乐应助starry采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672