Multivariate joint model under competing risks to predict death of hospitalized patients for SARS‐CoV‐2 infection

医学 多元统计 2019年冠状病毒病(COVID-19) 多元分析 比例危险模型 急诊医学 生存分析 危险系数 内科学 重症监护医学 疾病 统计 置信区间 传染病(医学专业) 数学
作者
Alexandra Lavalley‐Morelle,Nathan Peiffer‐Smadja,Simon B. Gressens,Bérénice Souhail,Alexandre Lahens,Agathe Bounhiol,François‐Xavier Lescure,France Mentré,Jimmy Mullaert
出处
期刊:Biometrical Journal [Wiley]
卷期号:66 (1) 被引量:2
标识
DOI:10.1002/bimj.202300049
摘要

Abstract During the coronavirus disease 2019 (COVID‐19) pandemic, several clinical prognostic scores have been proposed and evaluated in hospitalized patients, relying on variables available at admission. However, capturing data collected from the longitudinal follow‐up of patients during hospitalization may improve prediction accuracy of a clinical outcome. To answer this question, 327 patients diagnosed with COVID‐19 and hospitalized in an academic French hospital between January and July 2020 are included in the analysis. Up to 59 biomarkers were measured from the patient admission to the time to death or discharge from hospital. We consider a joint model with multiple linear or nonlinear mixed‐effects models for biomarkers evolution, and a competing risks model involving subdistribution hazard functions for the risks of death and discharge. The links are modeled by shared random effects, and the selection of the biomarkers is mainly based on the significance of the link between the longitudinal and survival parts. Three biomarkers are retained: the blood neutrophil counts, the arterial pH, and the C‐reactive protein. The predictive performances of the model are evaluated with the time‐dependent area under the curve (AUC) for different landmark and horizon times, and compared with those obtained from a baseline model that considers only information available at admission. The joint modeling approach helps to improve predictions when sufficient information is available. For landmark 6 days and horizon of 30 days, we obtain AUC [95% CI] 0.73 [0.65, 0.81] and 0.81 [0.73, 0.89] for the baseline and joint model, respectively ( p = 0.04). Statistical inference is validated through a simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助快乐小肥仔采纳,获得10
1秒前
Rundstet应助mm采纳,获得10
3秒前
海清完成签到 ,获得积分10
3秒前
5秒前
6秒前
6秒前
7秒前
白翊辰发布了新的文献求助10
11秒前
无不破哉发布了新的文献求助10
11秒前
刘家翔发布了新的文献求助10
13秒前
Ava应助卡农采纳,获得10
13秒前
XY完成签到,获得积分10
17秒前
白翊辰完成签到,获得积分10
20秒前
CipherSage应助enchanted采纳,获得10
21秒前
w婷完成签到 ,获得积分10
25秒前
SciGPT应助xwwwww采纳,获得10
25秒前
26秒前
zys完成签到,获得积分10
28秒前
29秒前
小二郎应助chen采纳,获得10
30秒前
31秒前
curtisness应助charon采纳,获得10
31秒前
33秒前
可爱的函函应助enchanted采纳,获得10
34秒前
34秒前
美好灰狼发布了新的文献求助10
35秒前
sijin1216完成签到,获得积分10
36秒前
葉要加油完成签到,获得积分20
37秒前
37秒前
lala发布了新的文献求助10
38秒前
38秒前
墨沁完成签到,获得积分10
41秒前
curtisness应助nkk采纳,获得10
42秒前
大Doctor陈发布了新的文献求助30
42秒前
mmmmmMM完成签到 ,获得积分10
43秒前
bkagyin应助华华采纳,获得10
44秒前
老唐发布了新的文献求助10
44秒前
Yifan2024应助科研通管家采纳,获得80
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
桐桐应助科研通管家采纳,获得10
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359441
求助须知:如何正确求助?哪些是违规求助? 2982264
关于积分的说明 8702712
捐赠科研通 2663862
什么是DOI,文献DOI怎么找? 1458686
科研通“疑难数据库(出版商)”最低求助积分说明 675236
邀请新用户注册赠送积分活动 666300