Multivariate joint model under competing risks to predict death of hospitalized patients for SARS‐CoV‐2 infection

医学 多元统计 2019年冠状病毒病(COVID-19) 多元分析 比例危险模型 急诊医学 生存分析 危险系数 内科学 重症监护医学 疾病 统计 置信区间 传染病(医学专业) 数学
作者
Alexandra Lavalley‐Morelle,Nathan Peiffer‐Smadja,Simon B. Gressens,Bérénice Souhail,Alexandre Lahens,Agathe Bounhiol,François‐Xavier Lescure,France Mentré,Jimmy Mullaert
出处
期刊:Biometrical Journal [Wiley]
卷期号:66 (1) 被引量:2
标识
DOI:10.1002/bimj.202300049
摘要

Abstract During the coronavirus disease 2019 (COVID‐19) pandemic, several clinical prognostic scores have been proposed and evaluated in hospitalized patients, relying on variables available at admission. However, capturing data collected from the longitudinal follow‐up of patients during hospitalization may improve prediction accuracy of a clinical outcome. To answer this question, 327 patients diagnosed with COVID‐19 and hospitalized in an academic French hospital between January and July 2020 are included in the analysis. Up to 59 biomarkers were measured from the patient admission to the time to death or discharge from hospital. We consider a joint model with multiple linear or nonlinear mixed‐effects models for biomarkers evolution, and a competing risks model involving subdistribution hazard functions for the risks of death and discharge. The links are modeled by shared random effects, and the selection of the biomarkers is mainly based on the significance of the link between the longitudinal and survival parts. Three biomarkers are retained: the blood neutrophil counts, the arterial pH, and the C‐reactive protein. The predictive performances of the model are evaluated with the time‐dependent area under the curve (AUC) for different landmark and horizon times, and compared with those obtained from a baseline model that considers only information available at admission. The joint modeling approach helps to improve predictions when sufficient information is available. For landmark 6 days and horizon of 30 days, we obtain AUC [95% CI] 0.73 [0.65, 0.81] and 0.81 [0.73, 0.89] for the baseline and joint model, respectively ( p = 0.04). Statistical inference is validated through a simulation study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉凉应助姚芭蕉采纳,获得10
刚刚
干净利落完成签到,获得积分10
1秒前
liudw完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
Album发布了新的文献求助10
3秒前
loka发布了新的文献求助10
4秒前
4秒前
Amorfati发布了新的文献求助10
8秒前
win发布了新的文献求助10
8秒前
marco发布了新的文献求助10
9秒前
psyche完成签到,获得积分10
10秒前
10秒前
11秒前
13秒前
景妙海完成签到 ,获得积分10
13秒前
阿伟完成签到 ,获得积分20
14秒前
fufu发布了新的文献求助10
14秒前
Lighten完成签到 ,获得积分10
15秒前
付艳完成签到,获得积分10
17秒前
小丑发布了新的文献求助10
19秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
Zhy完成签到,获得积分10
28秒前
小丑完成签到,获得积分10
29秒前
海带完成签到,获得积分10
29秒前
海海完成签到,获得积分10
30秒前
ccc完成签到,获得积分10
33秒前
35秒前
SCULGJ完成签到,获得积分10
35秒前
37秒前
38秒前
莫三颜完成签到 ,获得积分10
38秒前
好运小陈发布了新的文献求助10
39秒前
41秒前
41秒前
科研通AI2S应助win采纳,获得10
42秒前
FFSGF发布了新的文献求助10
42秒前
43秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499