已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Graph gating-mixer for sequential recommendation

计算机科学 嵌入 标识符 图形 推荐系统 理论计算机科学 人工智能 情报检索 程序设计语言
作者
Bin Wu,Xun Su,Jing Liang,Zhongchuan Sun,Lihong Zhong,Yangdong Ye
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122060-122060
标识
DOI:10.1016/j.eswa.2023.122060
摘要

Recent Transformer-based architectures have achieved encouraging performance for sequential recommendation, whereas their computational complexity is quadratic to the sequence length. MLP4Rec is a promising solution to settle this issue, which captures item transition patterns by a MLP-Mixer layer. Despite effectiveness, we argue that it still faces two critical limitations. On the one hand, it employs the one-hot ID technique to generate each user/item embedding, which has no specific semantics apart from being an identifier. In this case, given these ID embeddings as the original input of a MLP-Mixer layer, it is non-trivial to distill the useful information for other layers. On the other hand, it fails to explicitly differentiate the significance of different factors of an item, which is unrealistic to capture the user’s true taste in a short context; meanwhile, it also does not discriminate the importance of each item instance given the recent actions of a user. To overcome such two limitations, we propose a new solution for sequential recommendation, namely a graph Gating-Mixer Recommender (GMRec). Our solution decomposes the sequential recommendation workflow into three steps. First, by means of graph neural networks, we embed a linear graph propagation module to produce high-quality user and item embeddings. Afterwards, we replace the MLP-Mixer layer in MLP4Rec with a devised dual gating block, which could dynamically control what features and which items can be passed to the downstream layers. Lastly, we devise a user-specific gating strategy to adaptively integrate two components in GMRec. Extensive experiments are performed on the Beauty, Cellphone, Gowalla, and ML-10M datasets, demonstrating the rationality and effectiveness of our solution. Specifically, when Precision@10, Recall@10, MAP@10, and NDCG@10 are adopted as evaluation metrics, the performance gains of GMRec over recent state-of-the-art methods on four datasets are 11.91%, 19.46%, 9.56%, and 13.01%, respectively. Our implemented codes and datatsets are available via https://github.com/wubinzzu/GMRec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
似水流年发布了新的文献求助10
1秒前
2秒前
3秒前
lin发布了新的文献求助10
6秒前
7秒前
gggghhhh发布了新的文献求助10
8秒前
科目三应助李思言采纳,获得20
12秒前
13秒前
14秒前
北雨发布了新的文献求助10
18秒前
18秒前
MAC发布了新的文献求助10
19秒前
丘比特应助QF采纳,获得10
20秒前
20秒前
21秒前
22秒前
23秒前
岸在海的深处完成签到 ,获得积分10
24秒前
wanci应助失眠的水风采纳,获得10
25秒前
26秒前
nnnd77发布了新的文献求助10
26秒前
暴躁的元灵完成签到 ,获得积分10
29秒前
李思言发布了新的文献求助20
33秒前
似水流年完成签到,获得积分20
34秒前
MillionMiao发布了新的文献求助30
34秒前
35秒前
35秒前
天天快乐应助小方采纳,获得10
37秒前
南宫书瑶发布了新的文献求助10
38秒前
38秒前
lsh发布了新的文献求助10
38秒前
lxy66881完成签到,获得积分10
39秒前
孝顺的尔丝完成签到,获得积分10
39秒前
JamesPei应助piglet采纳,获得10
40秒前
41秒前
42秒前
same发布了新的文献求助10
45秒前
47秒前
上官若男应助El采纳,获得30
48秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154722
求助须知:如何正确求助?哪些是违规求助? 2805534
关于积分的说明 7865058
捐赠科研通 2463710
什么是DOI,文献DOI怎么找? 1311554
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601832