Exploring the therapeutic potential of layered double hydroxides and transition metal dichalcogenides through the convergence of rheumatology and nanotechnology using generative adversarial network

趋同(经济学) 生成语法 过渡金属 对抗制 纳米技术 材料科学 计算机科学 化学 人工智能 催化作用 生物化学 经济 经济增长
作者
Suxian Lin,Weiwei Chen,Mohammed S. Alqahtani,Dalia H. Elkamchouchi,Yisu Ge,Yanjie Lu,Guodao Zhang,Mudan Wang
出处
期刊:Environmental Research [Elsevier]
卷期号:241: 117262-117262 被引量:3
标识
DOI:10.1016/j.envres.2023.117262
摘要

Two-dimensional Layered double hydroxides (LDHs) are highly used in the biomedical domain due to their biocompatibility, biodegradability, controlled drug loading and release capabilities, and improved cellular permeability. The interaction of LDHs with biological systems could facilitate targeted drug delivery and make them an attractive option for various biomedical applications. Rheumatoid Arthritis (RA) requires targeted drug delivery for optimum therapeutic outcomes. In this study, stacked double hydroxide nanocomposites with dextran sulphate modification (LDH-DS) were developed while exhibiting both targeting and pH-sensitivity for rheumatological conditions. This research examines the loading, release kinetics, and efficiency of the therapeutics of interest in the LDH-based drug delivery system. The mean size of LDH-DS particles (300.1 ± 8.12 nm) is -12.11 ± 0.4 mV. The encapsulation efficiency was 48.52%, and the loading efficacy was 16.81%. In vitro release tests indicate that the drug's discharge is modified more rapidly in PBS at pH 5.4 compared to pH 5.6, which later reached 7.3, showing the case sensitivity to pH. A generative adversarial network (GAN) is used to analyze the drug delivery system in rheumatology. The GAN model achieved high accuracy and classification rates of 99.3% and 99.0%, respectively, and a validity of 99.5%. The second and third administrations resulted in a significant change with p-values of 0.001 and 0.05, respectively. This investigation unequivocally demonstrated that LDH functions as a biocompatible drug delivery matrix, significantly improving delivery effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
青青完成签到 ,获得积分10
3秒前
Chan0501发布了新的文献求助10
3秒前
昭昭完成签到,获得积分10
4秒前
SCI发布了新的文献求助10
4秒前
卓然完成签到,获得积分10
4秒前
李来仪发布了新的文献求助10
5秒前
6秒前
菲菲呀完成签到,获得积分10
6秒前
Rrr发布了新的文献求助10
6秒前
8秒前
陌路完成签到,获得积分10
8秒前
善学以致用应助leon采纳,获得30
8秒前
9秒前
斯文败类应助嘻嘻采纳,获得10
9秒前
科研通AI5应助小只bb采纳,获得30
9秒前
yyyy发布了新的文献求助10
9秒前
2023AKY完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
彭于晏应助惠惠采纳,获得10
12秒前
风魂剑主完成签到,获得积分10
13秒前
yryzst9899发布了新的文献求助10
13秒前
14秒前
飘逸小笼包完成签到,获得积分10
14秒前
科研小郑完成签到,获得积分10
14秒前
CipherSage应助熊boy采纳,获得10
14秒前
XXGG完成签到 ,获得积分10
15秒前
大个应助舒心赛凤采纳,获得10
15秒前
晨曦发布了新的文献求助10
16秒前
16秒前
ff0110完成签到,获得积分10
17秒前
星辰大海应助苹果萧采纳,获得10
17秒前
徐徐完成签到,获得积分10
17秒前
哈哈哈哈发布了新的文献求助10
18秒前
请叫我风吹麦浪应助yoon采纳,获得10
18秒前
认真的青柠完成签到,获得积分10
18秒前
bbanshan完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794