Applications of Machine Learning to Predict the Flexural Bearing Capacity of Hollow Core Slabs After Fire Exposure

人工神经网络 厚板 抗弯强度 结构工程 承载力 桥(图论) 有限元法 近似误差 计算机科学 芯(光纤) 防火性能 消防安全 工程类 土木工程 机器学习 材料科学 算法 耐火性 复合材料 内科学 电信 医学
作者
Chaowei Hao,Baoyao Lin,Mingfa Wang,Laiyong Wang,Dejin Xing
出处
期刊:Structural Engineering International [Informa]
卷期号:34 (1): 77-86
标识
DOI:10.1080/10168664.2023.2211591
摘要

AbstractConventional evaluation of the overall mechanical properties and ultimate flexural capacity of prestressed hollow core slabs after a fire exposure depends heavily on the inversion of fire scene temperature. To avoid this drawback, this paper presents a new methodology which combines a generalized regression neural network (GRNN) with conventional non-destructive testing technology. Thereby, a neural network model for predicting the material performance parameters after fire exposure is obtained based on conventional testing indices. A hollow core slab bridge is used as an example, and the applicability of the trained network model is confirmed using numerical simulation and a field failure test. Results show that the overall relative error of GRNN in predicting the key performance parameters of the bridge after fire exposure is less than 10%. Further, because of the good thermal inertia of the concrete, the relative error in predicting the material performance parameters of steel after a fire is less than 5%. Moreover, the ultimate flexural capacity of the prestressed hollow core slab after a fire can be accurately evaluated by feeding the material performance parameters predicted by GRNN neural network into the finite element (FE) model.Keywords: firehollow core slabmachine learningneuronic networkultimate bearing capacity Disclosure StatementNo potential conflict of interest was reported by the author(s).Data Availability StatementSome or all data, models, or codes generated or used during the study are available from the corresponding author by request.Additional informationFundingThis work was supported by the National Key Research and Development Program of China [grant number 2017YFE0103000]; Science and Technology Plan Project of Shandong Provincial Department of Transportation [grant number 2017B62]; Central Research Institutes of Basic Research and Public Service Special Operations [grant number 2021-9060a].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
laowuzheng完成签到,获得积分10
2秒前
斯文银耳汤应助嘉嘉琦采纳,获得10
3秒前
3秒前
hhkj发布了新的文献求助10
3秒前
莫黎完成签到,获得积分10
3秒前
3秒前
充电宝应助跳跃鸽子采纳,获得10
4秒前
yellow_0000发布了新的文献求助30
5秒前
椒盐鲨鱼皮完成签到,获得积分10
5秒前
安静无招发布了新的文献求助10
5秒前
glimmen完成签到,获得积分10
7秒前
xiaobai完成签到,获得积分10
8秒前
8秒前
Transformer完成签到,获得积分10
12秒前
tesla完成签到 ,获得积分10
13秒前
14秒前
dungaway发布了新的文献求助10
15秒前
18秒前
隐形曼青应助Andrew采纳,获得20
18秒前
lcx完成签到,获得积分10
19秒前
1111发布了新的文献求助10
19秒前
李爱国应助刘晓倩采纳,获得10
19秒前
yellow_0000完成签到,获得积分10
19秒前
Akim应助YJL采纳,获得10
20秒前
lulu完成签到,获得积分20
20秒前
yang完成签到,获得积分10
22秒前
意义完成签到,获得积分10
22秒前
23秒前
初步发布了新的文献求助20
23秒前
zzzwww发布了新的文献求助10
25秒前
夏天的小沐沐完成签到,获得积分10
25秒前
活力的灵薇完成签到,获得积分10
25秒前
mayimo完成签到,获得积分10
26秒前
27秒前
1111完成签到,获得积分20
28秒前
LUO发布了新的文献求助10
29秒前
景辣条应助sssss采纳,获得10
29秒前
哈哈哈哈完成签到 ,获得积分10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137994
求助须知:如何正确求助?哪些是违规求助? 2788986
关于积分的说明 7789404
捐赠科研通 2445432
什么是DOI,文献DOI怎么找? 1300328
科研通“疑难数据库(出版商)”最低求助积分说明 625900
版权声明 601046