Unsupervised Encoder–Decoder Network Under Spatial and Spectral Guidance for Hyperspectral and Multispectral Image Fusion

高光谱成像 多光谱图像 计算机科学 人工智能 图像分辨率 图像融合 计算机视觉 遥感 模式识别(心理学) 编码器 图像(数学) 地理 操作系统
作者
Huajing Wu,Kefei Zhang,Suqin Wu,Shuangshuang Shi,Chaofa Bian,Minghao Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2023.3320404
摘要

Due to the limitations of hyperspectral optical imaging, hyperspectral images have a dilemma between spectral and spatial resolutions. Hyperspectral and multispectral image (HSI-MSI) fusion, which combines a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI), can generate a high-spatial-resolution hyperspectral image (HR-HSI). In existing methods for hyperspectral and multispectral fusion, correlation between spectral and spatial domains in HSIs is mostly neglected. To address this issue, an unsupervised encoder-decoder network under spatial and spectral guidance for hyperspectral and multispectral image fusion (uEDSSG) was proposed in this study. To learn more accurate abundances of a LR-HSI and a HR-MSI, multi-hierarchical encoders under spatial and spectral guidance were designed to extract multi-hierarchical fused features from the LR-HSI and HR-MSI with the guidance of the HR-MSI and LR-HSI, respectively. In the new method, deep coupling of the point spread function (PSF) or spectral response function (SRF) and edge of the HSIs was designed to maintain the spatial and spectral details of the HR-HSI; a spatial-spectral constraint was constructed to establish the relationship of the HSIs. Both visual and quantitative evaluation results of experiments based on both synthetic and real datasets showed that the proposed method outperformed seven common methods. The results suggest that the new method by maintaining the correlation between spectral and spatial domains can improve the result of HSI-MSI fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调研昵称发布了新的文献求助10
刚刚
鲤鱼梦柳完成签到 ,获得积分10
1秒前
情怀应助likw23采纳,获得20
3秒前
贝壳发布了新的文献求助10
3秒前
fgfdgf完成签到,获得积分10
3秒前
在水一方应助勤奋冬寒采纳,获得10
6秒前
清爽灰狼完成签到,获得积分10
6秒前
Lucas应助王宇辉采纳,获得10
6秒前
8秒前
8秒前
8秒前
Tracy完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助安寒采纳,获得10
11秒前
YDSG完成签到,获得积分10
11秒前
忧虑的代容完成签到,获得积分10
12秒前
yfy发布了新的文献求助10
13秒前
Tracy关注了科研通微信公众号
13秒前
Genmii完成签到,获得积分10
14秒前
tl完成签到,获得积分10
14秒前
15秒前
星辰大海应助认真的傲柏采纳,获得10
17秒前
过冷风完成签到,获得积分10
17秒前
17秒前
田様应助妮儿采纳,获得10
18秒前
Owen应助hui采纳,获得10
18秒前
18秒前
英姑应助摆不烂采纳,获得10
18秒前
panda完成签到,获得积分0
19秒前
橙子完成签到,获得积分10
20秒前
20秒前
ccc发布了新的文献求助10
20秒前
21秒前
科研通AI2S应助王睿采纳,获得30
21秒前
王宇辉发布了新的文献求助10
23秒前
慕青应助yfy采纳,获得10
24秒前
tmpstlml完成签到 ,获得积分10
24秒前
贝壳完成签到,获得积分10
25秒前
yah发布了新的文献求助10
25秒前
27秒前
tmpstlml关注了科研通微信公众号
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187