Unsupervised Encoder–Decoder Network Under Spatial and Spectral Guidance for Hyperspectral and Multispectral Image Fusion

高光谱成像 多光谱图像 计算机科学 人工智能 图像分辨率 图像融合 计算机视觉 遥感 模式识别(心理学) 编码器 图像(数学) 地理 操作系统
作者
Huajing Wu,Kefei Zhang,Suqin Wu,Shuangshuang Shi,Chaofa Bian,Minghao Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2023.3320404
摘要

Due to the limitations of hyperspectral optical imaging, hyperspectral images have a dilemma between spectral and spatial resolutions. Hyperspectral and multispectral image (HSI-MSI) fusion, which combines a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI), can generate a high-spatial-resolution hyperspectral image (HR-HSI). In existing methods for hyperspectral and multispectral fusion, correlation between spectral and spatial domains in HSIs is mostly neglected. To address this issue, an unsupervised encoder-decoder network under spatial and spectral guidance for hyperspectral and multispectral image fusion (uEDSSG) was proposed in this study. To learn more accurate abundances of a LR-HSI and a HR-MSI, multi-hierarchical encoders under spatial and spectral guidance were designed to extract multi-hierarchical fused features from the LR-HSI and HR-MSI with the guidance of the HR-MSI and LR-HSI, respectively. In the new method, deep coupling of the point spread function (PSF) or spectral response function (SRF) and edge of the HSIs was designed to maintain the spatial and spectral details of the HR-HSI; a spatial-spectral constraint was constructed to establish the relationship of the HSIs. Both visual and quantitative evaluation results of experiments based on both synthetic and real datasets showed that the proposed method outperformed seven common methods. The results suggest that the new method by maintaining the correlation between spectral and spatial domains can improve the result of HSI-MSI fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
prosperp应助科研通管家采纳,获得10
刚刚
烟雨行舟发布了新的文献求助10
1秒前
燕尔蓝完成签到,获得积分10
1秒前
1秒前
1秒前
Ll发布了新的文献求助10
2秒前
2秒前
Sprite666完成签到,获得积分10
2秒前
Hu发布了新的文献求助10
2秒前
韭菜盒子发布了新的文献求助10
3秒前
故意的傲玉应助OveL采纳,获得30
3秒前
CC努力搞科研完成签到,获得积分10
3秒前
玩命的元槐完成签到,获得积分10
3秒前
xwc发布了新的文献求助30
3秒前
4秒前
4秒前
4秒前
BOSSJING发布了新的文献求助10
5秒前
lszhw发布了新的文献求助10
5秒前
ChrisKim完成签到,获得积分10
6秒前
Yacon完成签到 ,获得积分10
6秒前
RRRIGO发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Relax完成签到,获得积分10
8秒前
luoshi发布了新的文献求助10
8秒前
8秒前
可靠sue完成签到,获得积分10
9秒前
dzdzn3完成签到 ,获得积分20
9秒前
zjh发布了新的文献求助10
9秒前
yu_z完成签到 ,获得积分10
9秒前
上官若男应助韭菜盒子采纳,获得10
9秒前
细腻晓露完成签到,获得积分10
9秒前
大吴克发布了新的文献求助10
10秒前
饱满的煎饼完成签到,获得积分10
10秒前
dzdzn3关注了科研通微信公众号
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740