Unsupervised Encoder–Decoder Network Under Spatial and Spectral Guidance for Hyperspectral and Multispectral Image Fusion

高光谱成像 多光谱图像 计算机科学 人工智能 图像分辨率 图像融合 计算机视觉 遥感 模式识别(心理学) 编码器 图像(数学) 地理 操作系统
作者
Huajing Wu,Kefei Zhang,Suqin Wu,Shuangshuang Shi,Chaofa Bian,Minghao Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:5
标识
DOI:10.1109/tgrs.2023.3320404
摘要

Due to the limitations of hyperspectral optical imaging, hyperspectral images have a dilemma between spectral and spatial resolutions. Hyperspectral and multispectral image (HSI-MSI) fusion, which combines a low-spatial-resolution hyperspectral image (LR-HSI) and a high-spatial-resolution multispectral image (HR-MSI), can generate a high-spatial-resolution hyperspectral image (HR-HSI). In existing methods for hyperspectral and multispectral fusion, correlation between spectral and spatial domains in HSIs is mostly neglected. To address this issue, an unsupervised encoder-decoder network under spatial and spectral guidance for hyperspectral and multispectral image fusion (uEDSSG) was proposed in this study. To learn more accurate abundances of a LR-HSI and a HR-MSI, multi-hierarchical encoders under spatial and spectral guidance were designed to extract multi-hierarchical fused features from the LR-HSI and HR-MSI with the guidance of the HR-MSI and LR-HSI, respectively. In the new method, deep coupling of the point spread function (PSF) or spectral response function (SRF) and edge of the HSIs was designed to maintain the spatial and spectral details of the HR-HSI; a spatial-spectral constraint was constructed to establish the relationship of the HSIs. Both visual and quantitative evaluation results of experiments based on both synthetic and real datasets showed that the proposed method outperformed seven common methods. The results suggest that the new method by maintaining the correlation between spectral and spatial domains can improve the result of HSI-MSI fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈ha完成签到,获得积分10
刚刚
刚刚
刚刚
Yuan完成签到 ,获得积分10
刚刚
呆萌的小熊猫完成签到,获得积分20
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
肉团子完成签到,获得积分10
1秒前
x菜鸡博士应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
Wuin应助小橙子采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Lovely_pan发布了新的文献求助10
2秒前
田様应助ZZzz采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
3秒前
Y先生应助科研通管家采纳,获得20
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得30
3秒前
大个应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
1762120发布了新的文献求助10
3秒前
王王的苏应助科研通管家采纳,获得10
3秒前
怎么说应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
ikun完成签到,获得积分10
3秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961728
求助须知:如何正确求助?哪些是违规求助? 3508080
关于积分的说明 11139419
捐赠科研通 3240738
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803344