Non-contrast CT-based radiomics nomogram of pericoronary adipose tissue for predicting haemodynamically significant coronary stenosis in patients with type 2 diabetes

无线电技术 列线图 医学 对比度(视觉) 脂肪组织 狭窄 内科学 心脏病学 放射科 人工智能 计算机科学
作者
Can Chen,Meng Chen,Qing Tao,Su Hu,Chunhong Hu
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:23 (1)
标识
DOI:10.1186/s12880-023-01051-0
摘要

Type 2 diabetes mellitus (T2DM) patients have a higher incidence of coronary artery disease than the general population. The aim of this study was to develop a radiomics nomogram of pericoronary adipose tissue (PCAT) based on non-contrast CT to predict haemodynamically significant coronary stenosis in T2DM patients.The study enrolled 215 T2DM patients who underwent non-contrast CT and coronary computed tomography angiography (CCTA). CCTA derived fractional flow reserve (FFRCT) ≤ 0.80 was defined as hemodynamically significant stenosis.1691 radiomics features were extracted from PCAT on non-contrast CT. Minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) were used to select useful radiomics features to construct Radscore. Logistic regression was applied to select significant factors among Radscore, fat attenuation index (FAI) and coronary artery calcium score (CACS) to construct radiomics nomogram.Radscore [odds ratio (OR) = 2.84; P < 0.001] and CACS (OR = 1.00; P = 0.023) were identified as independent predictors to construct the radiomics nomogram. The radiomics nomogram showed excellent performance [training cohort: area under the curve (AUC) = 0.81; 95% CI: 0.76-0.86; validation cohort: AUC = 0.83; 95%CI: 0.76-0.90] to predict haemodynamically significant coronary stenosis in patients with T2DM. Decision curve analysis demonstrated high clinical value of the radiomics nomogram.The non-contrast CT-based radiomics nomogram of PCAT could effectively predict haemodynamically significant coronary stenosis in patients with T2DM, which might be a potential noninvasive tool for screening of high-risk patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luobo完成签到,获得积分10
刚刚
刚刚
方老师发布了新的文献求助10
刚刚
向钱看完成签到,获得积分10
1秒前
1秒前
传奇3应助HF采纳,获得10
2秒前
11完成签到 ,获得积分10
2秒前
2秒前
Irene完成签到,获得积分20
2秒前
3秒前
黎黎发布了新的文献求助10
3秒前
Jasper应助大大怪z采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
luobo发布了新的文献求助10
4秒前
Syyyy发布了新的文献求助10
4秒前
HuangXintong发布了新的文献求助20
5秒前
5秒前
YAN应助典雅的俊驰采纳,获得10
5秒前
爆米花应助Alike采纳,获得10
6秒前
duduying完成签到,获得积分10
6秒前
英俊的铭应助jeronimo采纳,获得10
6秒前
xiu发布了新的文献求助10
6秒前
wei完成签到,获得积分10
6秒前
8秒前
天天快乐应助王静琳采纳,获得10
8秒前
niko发布了新的文献求助10
8秒前
8秒前
赘婿应助汉库克采纳,获得10
8秒前
英俊的铭应助hhhhh采纳,获得10
8秒前
8秒前
小龙完成签到,获得积分10
8秒前
舒仲完成签到,获得积分10
9秒前
顾矜应助hbydyy采纳,获得10
9秒前
Vitrixia完成签到,获得积分20
9秒前
重要代丝完成签到,获得积分10
10秒前
staceylululu发布了新的文献求助10
10秒前
10秒前
学术白银完成签到 ,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123