Non-contrast CT-based radiomics nomogram of pericoronary adipose tissue for predicting haemodynamically significant coronary stenosis in patients with type 2 diabetes

无线电技术 列线图 医学 对比度(视觉) 脂肪组织 狭窄 内科学 心脏病学 放射科 人工智能 计算机科学
作者
Can Chen,Meng Chen,Qing Tao,Su Hu,Chunhong Hu
出处
期刊:BMC Medical Imaging [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12880-023-01051-0
摘要

Type 2 diabetes mellitus (T2DM) patients have a higher incidence of coronary artery disease than the general population. The aim of this study was to develop a radiomics nomogram of pericoronary adipose tissue (PCAT) based on non-contrast CT to predict haemodynamically significant coronary stenosis in T2DM patients.The study enrolled 215 T2DM patients who underwent non-contrast CT and coronary computed tomography angiography (CCTA). CCTA derived fractional flow reserve (FFRCT) ≤ 0.80 was defined as hemodynamically significant stenosis.1691 radiomics features were extracted from PCAT on non-contrast CT. Minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) were used to select useful radiomics features to construct Radscore. Logistic regression was applied to select significant factors among Radscore, fat attenuation index (FAI) and coronary artery calcium score (CACS) to construct radiomics nomogram.Radscore [odds ratio (OR) = 2.84; P < 0.001] and CACS (OR = 1.00; P = 0.023) were identified as independent predictors to construct the radiomics nomogram. The radiomics nomogram showed excellent performance [training cohort: area under the curve (AUC) = 0.81; 95% CI: 0.76-0.86; validation cohort: AUC = 0.83; 95%CI: 0.76-0.90] to predict haemodynamically significant coronary stenosis in patients with T2DM. Decision curve analysis demonstrated high clinical value of the radiomics nomogram.The non-contrast CT-based radiomics nomogram of PCAT could effectively predict haemodynamically significant coronary stenosis in patients with T2DM, which might be a potential noninvasive tool for screening of high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助dongxuzhen采纳,获得10
1秒前
淼米奥发布了新的文献求助30
1秒前
jie酱拌面应助choy采纳,获得10
2秒前
阳光鹭洋发布了新的文献求助10
3秒前
虚幻雪一发布了新的文献求助10
3秒前
4秒前
bxj完成签到,获得积分20
5秒前
liwei完成签到,获得积分10
5秒前
SciGPT应助风清扬采纳,获得10
6秒前
程君完成签到,获得积分10
6秒前
英姑应助flywire采纳,获得10
8秒前
陈有游完成签到,获得积分10
8秒前
8秒前
JamesPei应助77采纳,获得10
10秒前
昭昭完成签到 ,获得积分10
10秒前
wsq完成签到,获得积分10
10秒前
小二郎应助renrunxue采纳,获得10
11秒前
orchid发布了新的文献求助30
11秒前
12秒前
ccchengzi完成签到,获得积分10
16秒前
聂青枫完成签到,获得积分10
16秒前
阳光大有发布了新的文献求助10
17秒前
木木三完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
柒月完成签到,获得积分20
21秒前
21秒前
renrunxue完成签到,获得积分20
22秒前
bxj发布了新的文献求助20
22秒前
23秒前
木木三发布了新的文献求助10
24秒前
renrunxue发布了新的文献求助10
25秒前
科目三应助Andy采纳,获得30
27秒前
Vito发布了新的文献求助10
27秒前
28秒前
30秒前
30秒前
科研通AI6应助nikuisi采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156284
求助须知:如何正确求助?哪些是违规求助? 4351817
关于积分的说明 13550182
捐赠科研通 4194927
什么是DOI,文献DOI怎么找? 2300757
邀请新用户注册赠送积分活动 1300699
关于科研通互助平台的介绍 1245750