Non-contrast CT-based radiomics nomogram of pericoronary adipose tissue for predicting haemodynamically significant coronary stenosis in patients with type 2 diabetes

无线电技术 列线图 医学 对比度(视觉) 脂肪组织 狭窄 内科学 心脏病学 放射科 人工智能 计算机科学
作者
Can Chen,Meng Chen,Qing Tao,Su Hu,Chunhong Hu
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:23 (1)
标识
DOI:10.1186/s12880-023-01051-0
摘要

Type 2 diabetes mellitus (T2DM) patients have a higher incidence of coronary artery disease than the general population. The aim of this study was to develop a radiomics nomogram of pericoronary adipose tissue (PCAT) based on non-contrast CT to predict haemodynamically significant coronary stenosis in T2DM patients.The study enrolled 215 T2DM patients who underwent non-contrast CT and coronary computed tomography angiography (CCTA). CCTA derived fractional flow reserve (FFRCT) ≤ 0.80 was defined as hemodynamically significant stenosis.1691 radiomics features were extracted from PCAT on non-contrast CT. Minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) were used to select useful radiomics features to construct Radscore. Logistic regression was applied to select significant factors among Radscore, fat attenuation index (FAI) and coronary artery calcium score (CACS) to construct radiomics nomogram.Radscore [odds ratio (OR) = 2.84; P < 0.001] and CACS (OR = 1.00; P = 0.023) were identified as independent predictors to construct the radiomics nomogram. The radiomics nomogram showed excellent performance [training cohort: area under the curve (AUC) = 0.81; 95% CI: 0.76-0.86; validation cohort: AUC = 0.83; 95%CI: 0.76-0.90] to predict haemodynamically significant coronary stenosis in patients with T2DM. Decision curve analysis demonstrated high clinical value of the radiomics nomogram.The non-contrast CT-based radiomics nomogram of PCAT could effectively predict haemodynamically significant coronary stenosis in patients with T2DM, which might be a potential noninvasive tool for screening of high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒适梨愁发布了新的文献求助10
刚刚
汉堡包应助刻苦羽毛采纳,获得30
2秒前
浮游应助XL神放采纳,获得10
2秒前
科研通AI6应助he采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
酷波er应助小路采纳,获得10
4秒前
江楠发布了新的文献求助10
4秒前
超级Huan完成签到,获得积分10
4秒前
zhangzhaoxin完成签到,获得积分10
4秒前
tt驳回了cc应助
5秒前
酱酱完成签到,获得积分10
5秒前
5秒前
答案加载中完成签到 ,获得积分10
7秒前
雷家发布了新的文献求助10
7秒前
xn201120发布了新的文献求助10
8秒前
8秒前
9秒前
深情安青应助养生坤坤采纳,获得10
9秒前
汉堡包应助赵浩楠采纳,获得10
10秒前
11秒前
11秒前
缥缈橘子发布了新的文献求助10
11秒前
阳光谷完成签到,获得积分10
11秒前
美好的冰蓝完成签到 ,获得积分10
12秒前
lixiaorui发布了新的文献求助10
13秒前
科研通AI6应助江楠采纳,获得10
14秒前
酷波er应助雨雨爱薯条采纳,获得10
14秒前
852应助qq采纳,获得10
14秒前
15秒前
阳光谷发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
17秒前
机灵千萍完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
领导范儿应助XL神放采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091