Non-contrast CT-based radiomics nomogram of pericoronary adipose tissue for predicting haemodynamically significant coronary stenosis in patients with type 2 diabetes

无线电技术 列线图 医学 对比度(视觉) 脂肪组织 狭窄 内科学 心脏病学 放射科 人工智能 计算机科学
作者
Can Chen,Meng Chen,Qing Tao,Su Hu,Chunhong Hu
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:23 (1)
标识
DOI:10.1186/s12880-023-01051-0
摘要

Type 2 diabetes mellitus (T2DM) patients have a higher incidence of coronary artery disease than the general population. The aim of this study was to develop a radiomics nomogram of pericoronary adipose tissue (PCAT) based on non-contrast CT to predict haemodynamically significant coronary stenosis in T2DM patients.The study enrolled 215 T2DM patients who underwent non-contrast CT and coronary computed tomography angiography (CCTA). CCTA derived fractional flow reserve (FFRCT) ≤ 0.80 was defined as hemodynamically significant stenosis.1691 radiomics features were extracted from PCAT on non-contrast CT. Minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) were used to select useful radiomics features to construct Radscore. Logistic regression was applied to select significant factors among Radscore, fat attenuation index (FAI) and coronary artery calcium score (CACS) to construct radiomics nomogram.Radscore [odds ratio (OR) = 2.84; P < 0.001] and CACS (OR = 1.00; P = 0.023) were identified as independent predictors to construct the radiomics nomogram. The radiomics nomogram showed excellent performance [training cohort: area under the curve (AUC) = 0.81; 95% CI: 0.76-0.86; validation cohort: AUC = 0.83; 95%CI: 0.76-0.90] to predict haemodynamically significant coronary stenosis in patients with T2DM. Decision curve analysis demonstrated high clinical value of the radiomics nomogram.The non-contrast CT-based radiomics nomogram of PCAT could effectively predict haemodynamically significant coronary stenosis in patients with T2DM, which might be a potential noninvasive tool for screening of high-risk patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助鲤鱼澜采纳,获得30
4秒前
濠哥妈咪发布了新的文献求助10
5秒前
要减肥半邪给要减肥半邪的求助进行了留言
6秒前
6秒前
7秒前
赵峰发布了新的文献求助10
7秒前
7秒前
JoaquinH发布了新的文献求助10
7秒前
CodeCraft应助zhouzhou采纳,获得10
8秒前
科目三应助carbonhan采纳,获得10
8秒前
刘欢完成签到,获得积分10
9秒前
思源应助Wang采纳,获得10
9秒前
9秒前
刘欢发布了新的文献求助10
12秒前
12秒前
iyson完成签到,获得积分10
12秒前
luckyru发布了新的文献求助10
12秒前
16秒前
16秒前
瑶瑶酱完成签到 ,获得积分10
17秒前
晴晨完成签到 ,获得积分10
17秒前
仙人掌发布了新的文献求助10
19秒前
濠哥妈咪完成签到,获得积分10
20秒前
tt11111完成签到 ,获得积分10
20秒前
20秒前
20秒前
20秒前
坚定冬易完成签到 ,获得积分10
21秒前
22秒前
磨叽发布了新的文献求助10
22秒前
科研通AI2S应助新八采纳,获得10
22秒前
tinatian270完成签到,获得积分10
23秒前
万能图书馆应助阔达岂愈采纳,获得10
23秒前
三叔完成签到,获得积分0
24秒前
科研通AI2S应助新八采纳,获得10
24秒前
暮霭沉沉应助仙人掌采纳,获得10
26秒前
gghh完成签到,获得积分10
28秒前
SciGPT应助认真的裙子采纳,获得10
29秒前
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155971
求助须知:如何正确求助?哪些是违规求助? 2807318
关于积分的说明 7872715
捐赠科研通 2465696
什么是DOI,文献DOI怎么找? 1312291
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905