Solubility study of hydrogen in direct coal liquefaction solvent based on quantitative structure–property relationships model

溶解度 化学 溶剂 液化 财产(哲学) 煤液化 材料科学 化学工程 环境科学 有机化学 石油工程 地质学 工程类 认识论 哲学
作者
Xiaobin Zhang,Antony Rajendran,Xingbao Wang,Wenying Li
出处
期刊:Chinese Journal of Chemical Engineering [Elsevier BV]
卷期号:64: 250-258 被引量:3
标识
DOI:10.1016/j.cjche.2023.05.014
摘要

Direct coal liquefaction (DCL) is an important and effective method of converting coal into high-value-added chemicals and fuel oil. In DCL, heating the direct coal liquefaction solvent (DCLS) from low to high temperature and pre-hydrogenation of the DCLS are critical steps. Therefore, studying the dissolution of hydrogen in DCLS under liquefaction conditions gains importance. However, it is difficult to precisely determine hydrogen solubility only by experiments, especially under the actual DCL conditions. To address this issue, we developed a prediction model of hydrogen solubility in a single solvent based on the machine–learning quantitative structure-property relationship (ML-QSPR) methods. The results showed that the squared correlation coefficient R2 = 0.92 and root mean square error RMSE = 0.095, indicating the model’s good statistical performance. The external validation of the model also reveals excellent accuracy and predictive ability. Molecular polarization (α) is the main factor affecting the dissolution of hydrogen in DCLS. The hydrogen solubility in acyclic alkanes increases with increasing carbon number. Whereas in polycyclic aromatics, it decreases with increasing ring number, and in hydrogenated aromatics, it increases with hydrogenation degree. This work provides a new reference for the selection and proportioning of DCLS, i.e., a solvent with higher hydrogen solubility can be added to provide active hydrogen for the reaction and thus reduce the hydrogen pressure. Besides, it brings important insight into the theoretical significance and practical value of the DCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水木完成签到,获得积分10
1秒前
1秒前
完美世界应助开朗艳一采纳,获得10
1秒前
飘萍过客完成签到,获得积分10
1秒前
啦啦啦完成签到,获得积分10
1秒前
1秒前
平常叫兽完成签到,获得积分20
1秒前
yuyajun发布了新的文献求助10
1秒前
1秒前
katherine完成签到 ,获得积分10
1秒前
Steven发布了新的文献求助10
2秒前
2秒前
酷波er应助程昕采纳,获得10
3秒前
3秒前
CharlotteBlue应助稳重的秋天采纳,获得30
3秒前
就是笨怎么了完成签到,获得积分10
4秒前
王玉完成签到,获得积分10
4秒前
三个哈卡发布了新的文献求助10
4秒前
4秒前
领导范儿应助要减肥的chao采纳,获得10
4秒前
yuri完成签到,获得积分20
4秒前
领导范儿应助up_water采纳,获得10
5秒前
郭小宝发布了新的文献求助10
5秒前
天天向上完成签到,获得积分10
6秒前
无花果应助匆匆采纳,获得10
6秒前
汪洋发布了新的文献求助10
6秒前
香蕉觅云应助光亮萤采纳,获得10
6秒前
7秒前
8秒前
8秒前
9秒前
9秒前
刘文豪完成签到,获得积分10
9秒前
Ge Xiang发布了新的文献求助10
10秒前
勤劳的涑完成签到,获得积分10
10秒前
九月完成签到,获得积分10
10秒前
May应助八月采纳,获得20
10秒前
11秒前
今今发布了新的文献求助10
11秒前
田様应助kim采纳,获得10
11秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960824
求助须知:如何正确求助?哪些是违规求助? 3507059
关于积分的说明 11133511
捐赠科研通 3239361
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872160
科研通“疑难数据库(出版商)”最低求助积分说明 803149