亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Digital Twins-based Multi-agent Deep Reinforcement Learning for UAV-assisted Vehicle Edge Computing

强化学习 计算机科学 网络拓扑 任务(项目管理) 分布式计算 实时计算 GSM演进的增强数据速率 边缘计算 人工智能 计算机网络 工程类 系统工程
作者
Chenxing Hu,Qi Qi,Lei Zhang,Cong Liu,Dezhi Chen,Jianxin Liao,Zirui Zhuang,Jingyu Wang
标识
DOI:10.1109/smartworld-uic-atc-scalcom-digitaltwin-pricomp-metaverse56740.2022.00192
摘要

UAV-assisted vehicle-edge-computing (VEC) has become a viable solution for a new generation of intelligent transportation systems (ITS) and has attracted widespread attention from academia and industry. Compared with fixed ground devices, UAV can provide line-of-sight (LoS) link and has good mobility, which better matches the needs of individual wireless connectivity and high mobility of vehicle. However, the mobility of UAVs leads to dynamic changes in the network topology environment and brings new challenges in the rational path planning of UAVs, which brings new problems for network autonomous decision-making to achieve network resource allocation and load balancing. Therefore, in order to solve above problems, we introduce digital twins-based multi-agent deep Q-network (DT-based MADQN). Digital twin (DT) collects network data and reconstructs the network environment and provides the basis for Deep reinforcement learning (DRL) model training. DRL model provides a network decision-making solution based on real-time network status and empirical data. The simulation results show the effectiveness of the proposed algorithm. Compared to the baseline algorithm, it reduces the average task delay by 16.4% and improves the task completion rate by 97.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助曾泰平采纳,获得10
19秒前
36秒前
41秒前
起风了完成签到 ,获得积分10
41秒前
曾泰平发布了新的文献求助10
47秒前
Able完成签到,获得积分10
51秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
馆长应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
馆长应助科研通管家采纳,获得10
52秒前
1分钟前
1分钟前
1分钟前
忧郁小鸽子完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
cadnash完成签到,获得积分10
2分钟前
2分钟前
善学以致用应助桃欣采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
3分钟前
iman完成签到,获得积分10
3分钟前
共享精神应助Dreamer.采纳,获得10
3分钟前
愉快的花卷完成签到,获得积分10
3分钟前
田様应助愉快的花卷采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Dreamer.发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
cqhecq发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
Virtual应助科研通管家采纳,获得10
4分钟前
桃欣发布了新的文献求助10
4分钟前
桃欣完成签到,获得积分10
5分钟前
6分钟前
FashionBoy应助guhuihaozi采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595660
求助须知:如何正确求助?哪些是违规求助? 4007972
关于积分的说明 12408710
捐赠科研通 3686659
什么是DOI,文献DOI怎么找? 2032005
邀请新用户注册赠送积分活动 1065231
科研通“疑难数据库(出版商)”最低求助积分说明 950587