Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait

运动学 步态 运动捕捉 步态分析 人工智能 物理医学与康复 运动分析 计算机科学 均方误差 惯性测量装置 计算机视觉 运动(物理) 数学 医学 统计 物理 经典力学
作者
Brian Horsak,Anna Eichmann,Kerstin Lauer,Kerstin Prock,Philipp Krondorfer,Tarique Siragy,Bernhard Dumphart
出处
期刊:Journal of Biomechanics [Elsevier BV]
卷期号:159: 111801-111801 被引量:29
标识
DOI:10.1016/j.jbiomech.2023.111801
摘要

Markerless motion capturing has the potential to provide a low-cost and accessible alternative to traditional marker-based systems for real-world biomechanical assessment. However, before these systems can be put into practice, we need to rigorously evaluate their accuracy in estimating joint kinematics for various gait patterns. This study evaluated the accuracy of a low-cost, open-source, and smartphone-based markerless motion capture system, namely OpenCap, for measuring 3D joint kinematics in healthy and pathological gait compared to a marker-based system. 21 healthy volunteers were instructed to walk with four different gait patterns: physiological, crouch, circumduction, and equinus gait. Three-dimensional kinematic data were simultaneously recorded using the markerless and a marker-based motion capture system. The root mean square error (RMSE) and the peak error were calculated between every joint kinematic variable obtained by both systems. We found an overall RMSE of 5.8 (SD: 1.8 degrees) and a peak error of 11.3 degrees (SD: 3.9). A repeated measures ANOVA with post hoc tests indicated significant differences in RMSE and peak errors between the four gait patterns (p ¡ 0.05). Physiological gait presented the lowest, crouch and circumduction gait the highest errors. Our findings indicate a roughly comparable accuracy to IMU-based approaches and commercial markerless multi-camera solutions. However, errors are still above clinically desirable thresholds of two to five degrees. While our findings highlight the potential of markerless systems for assessing gait kinematics, they also underpin the need to further improve the underlying deep learning algorithms to make markerless pose estimation a valuable tool in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
iuiuiu发布了新的文献求助10
1秒前
1秒前
Timo干物类完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
stinkyfish完成签到,获得积分20
2秒前
SciGPT应助青柠采纳,获得10
2秒前
嘻嘻发布了新的文献求助10
2秒前
3秒前
鲤鱼小蕾完成签到,获得积分10
3秒前
3秒前
张俊敏发布了新的文献求助10
4秒前
酷雅的小跟班完成签到,获得积分20
4秒前
Xx完成签到 ,获得积分10
4秒前
阔达的萤完成签到,获得积分20
4秒前
明理夏槐发布了新的文献求助10
5秒前
研友_VZG7GZ应助saluo采纳,获得10
5秒前
静心安逸完成签到,获得积分10
5秒前
5秒前
CipherSage应助jm采纳,获得10
5秒前
阿Q完成签到,获得积分10
6秒前
小十七果完成签到,获得积分10
6秒前
今后应助包容寄云采纳,获得10
6秒前
乐观的水桃完成签到,获得积分10
7秒前
鳗鱼友灵完成签到,获得积分10
7秒前
7秒前
科目三应助不安青牛采纳,获得200
8秒前
耍酷紫安完成签到,获得积分10
8秒前
哈哈哈哈哈哈哈哈哈完成签到,获得积分20
8秒前
大徐1175发布了新的文献求助10
9秒前
zhang完成签到,获得积分10
9秒前
飘逸数据线完成签到,获得积分10
9秒前
热情蜜蜂完成签到,获得积分20
9秒前
背后海亦发布了新的文献求助10
9秒前
9秒前
Ann完成签到,获得积分10
9秒前
9秒前
敏感的芷珊完成签到,获得积分10
9秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479