Developing a continuous severity scale for MacTel type 2 using Deep Learning and implications for disease grading

人工智能 分类器(UML) 计算机科学 模式识别(心理学) 医学 机器学习
作者
Yue Wu,Catherine Egan,Abraham Olvera-Barrios,Lea Scheppke,Tünde Pető,Peter Charbel Issa,Tjebo Heeren,Irene Leung,Anand E. Rajesh,Adnan Tufail,Cecilia S. Lee,Emily Y. Chew,Martin Friedlander,Aaron Lee
出处
期刊:Ophthalmology [Elsevier BV]
标识
DOI:10.1016/j.ophtha.2023.09.016
摘要

Deep learning (DL) models have achieved state-of-the-art medical diagnosis classification accuracy. Current models are limited by discrete diagnosis labels, but could yield more information with diagnosis in a continuous scale. We developed a novel continuous severity scaling system for macular telangiectasia (MacTel) type 2 by combining a DL classification model with uniform manifold approximation and projection (UMAP).We used a DL network to learn a feature representation of MacTel severity from discrete severity labels and applied UMAP to embed this feature representation into 2 dimensions, thereby creating a continuous MacTel severity scale.A total of 2003 OCT volumes were analyzed from 1089 MacTel Project participants.We trained a multiview DL classifier using multiple B-scans from OCT volumes to learn a previously published discrete 7-step MacTel severity scale. The classifiers' last feature layer was extracted as input for UMAP, which embedded these features into a continuous 2-dimensional manifold. The DL classifier was assessed in terms of test accuracy. Rank correlation for the continuous UMAP scale against the previously published scale was calculated. Additionally, the UMAP scale was assessed in the κ agreement against 5 clinical experts on 100 pairs of patient volumes. For each pair of patient volumes, clinical experts were asked to select the volume with more severe MacTel disease and to compare them against the UMAP scale.Classification accuracy for the DL classifier and κ agreement versus clinical experts for UMAP.The multiview DL classifier achieved top 1 accuracy of 63.3% (186/294) on held-out test OCT volumes. The UMAP metric showed a clear continuous gradation of MacTel severity with a Spearman rank correlation of 0.84 with the previously published scale. Furthermore, the continuous UMAP metric achieved κ agreements of 0.56 to 0.63 with 5 clinical experts, which was comparable with interobserver κ values.Our UMAP embedding generated a continuous MacTel severity scale, without requiring continuous training labels. This technique can be applied to other diseases and may lead to more accurate diagnosis, improved understanding of disease progression, and key imaging features for pathologic characteristics.Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚影发布了新的文献求助10
1秒前
1秒前
Kittymiaoo完成签到,获得积分10
2秒前
一碗冷的粥完成签到,获得积分20
2秒前
酷炫的尔丝完成签到 ,获得积分10
2秒前
bkagyin应助哩蒜呐采纳,获得10
3秒前
无花果应助淡定荧采纳,获得10
3秒前
3秒前
褶皱完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
cc发布了新的文献求助20
7秒前
毛毛妈完成签到,获得积分10
7秒前
陈曦发布了新的文献求助10
8秒前
runtang完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
11秒前
笙霜半夏发布了新的文献求助10
11秒前
解松发布了新的文献求助10
12秒前
只爱吃肠粉完成签到,获得积分10
13秒前
风清扬应助义气的钻石采纳,获得10
13秒前
doiwanado发布了新的文献求助10
13秒前
Lucky完成签到,获得积分10
14秒前
14秒前
sxx完成签到,获得积分10
14秒前
14秒前
顾矜应助怕孤单的破茧采纳,获得10
14秒前
16秒前
可爱的函函应助修辛采纳,获得10
16秒前
如意枫叶发布了新的文献求助10
16秒前
PAN发布了新的文献求助30
16秒前
17秒前
17秒前
你雕姐完成签到,获得积分10
18秒前
lc完成签到,获得积分10
18秒前
lishihao发布了新的文献求助10
18秒前
Xbax完成签到,获得积分20
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176