Developing a continuous severity scale for MacTel type 2 using Deep Learning and implications for disease grading

人工智能 分类器(UML) 计算机科学 模式识别(心理学) 医学 机器学习
作者
Yue Wu,Catherine Egan,Abraham Olvera-Barrios,Lea Scheppke,Tünde Pető,Peter Charbel Issa,Tjebo Heeren,Irene Leung,Anand E. Rajesh,Adnan Tufail,Cecilia S. Lee,Emily Y. Chew,Martin Friedlander,Aaron Lee
出处
期刊:Ophthalmology [Elsevier]
标识
DOI:10.1016/j.ophtha.2023.09.016
摘要

Deep learning (DL) models have achieved state-of-the-art medical diagnosis classification accuracy. Current models are limited by discrete diagnosis labels, but could yield more information with diagnosis in a continuous scale. We developed a novel continuous severity scaling system for macular telangiectasia (MacTel) type 2 by combining a DL classification model with uniform manifold approximation and projection (UMAP).We used a DL network to learn a feature representation of MacTel severity from discrete severity labels and applied UMAP to embed this feature representation into 2 dimensions, thereby creating a continuous MacTel severity scale.A total of 2003 OCT volumes were analyzed from 1089 MacTel Project participants.We trained a multiview DL classifier using multiple B-scans from OCT volumes to learn a previously published discrete 7-step MacTel severity scale. The classifiers' last feature layer was extracted as input for UMAP, which embedded these features into a continuous 2-dimensional manifold. The DL classifier was assessed in terms of test accuracy. Rank correlation for the continuous UMAP scale against the previously published scale was calculated. Additionally, the UMAP scale was assessed in the κ agreement against 5 clinical experts on 100 pairs of patient volumes. For each pair of patient volumes, clinical experts were asked to select the volume with more severe MacTel disease and to compare them against the UMAP scale.Classification accuracy for the DL classifier and κ agreement versus clinical experts for UMAP.The multiview DL classifier achieved top 1 accuracy of 63.3% (186/294) on held-out test OCT volumes. The UMAP metric showed a clear continuous gradation of MacTel severity with a Spearman rank correlation of 0.84 with the previously published scale. Furthermore, the continuous UMAP metric achieved κ agreements of 0.56 to 0.63 with 5 clinical experts, which was comparable with interobserver κ values.Our UMAP embedding generated a continuous MacTel severity scale, without requiring continuous training labels. This technique can be applied to other diseases and may lead to more accurate diagnosis, improved understanding of disease progression, and key imaging features for pathologic characteristics.Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgcyp完成签到,获得积分10
4秒前
ysh完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
7秒前
wang完成签到,获得积分10
8秒前
Jzhang应助Yimim采纳,获得10
9秒前
沐风发布了新的文献求助20
10秒前
汉关发布了新的文献求助10
12秒前
12秒前
葶儿完成签到,获得积分10
12秒前
安详中蓝完成签到 ,获得积分10
13秒前
呆萌士晋发布了新的文献求助10
13秒前
13秒前
15秒前
呆头发布了新的文献求助10
17秒前
若水发布了新的文献求助200
18秒前
18秒前
19秒前
子川发布了新的文献求助10
19秒前
大头娃娃没下巴完成签到,获得积分10
21秒前
liyuchen完成签到,获得积分10
21秒前
CipherSage应助Lxxx_7采纳,获得10
22秒前
烟花应助永远少年采纳,获得10
22秒前
meng发布了新的文献求助10
24秒前
科研通AI5应助贪吃的猴子采纳,获得10
26秒前
26秒前
可爱的彩虹完成签到,获得积分10
26秒前
小确幸完成签到,获得积分10
26秒前
彭于晏应助毛毛虫采纳,获得10
27秒前
LilyChen完成签到 ,获得积分10
27秒前
Owen应助Su采纳,获得10
27秒前
27秒前
27秒前
28秒前
29秒前
yyyy关注了科研通微信公众号
29秒前
Jane完成签到 ,获得积分10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824