Classification and rapid non-destructive quality evaluation of different processed products of Cyperus rotundus based on near-infrared spectroscopy combined with deep learning

香附 粒子群优化 人工智能 卷积神经网络 人工神经网络 质量(理念) 计算机科学 模式识别(心理学) 机器学习 化学 传统医学 医学 哲学 认识论
作者
Yabo Shi,Tianyu He,Jiajing Zhong,Xi Mei,Haijun Yu,Mingxuan Li,Wei Zhang,De Ji,Lianlin Su,Tulin Lu,Xiaoli Zhao
出处
期刊:Talanta [Elsevier BV]
卷期号:268: 125266-125266 被引量:20
标识
DOI:10.1016/j.talanta.2023.125266
摘要

The quality of traditional Chinese medicine is very important for human health, but the traditional quality control method is very tedious, which leads to the substandard quality of many traditional Chinese medicine. In order to solve the problem of time-consuming and laborious traditional quality control methods, this study takes traditional Chinese medicine Cyperus rotundus as an example, a comprehensive strategy of near-infrared (NIR) spectroscopy combined with One-dimensional convolutional neural network (1D-CNN) and chaotic map dung beetle optimization (CDBO) algorithm combined with BP neural network (BPNN) is proposed. This strategy has the advantages of fast and non-destructive. It can not only qualitatively distinguish Cyperus rotundus and various processed products, but also quantitatively predict two bioactive components. In classification, 1D-CNN successfully distinguished four kinds of processed products of Cyperus rotundus with 100 % accuracy. Quantitatively, a CDBO algorithm is proposed to optimize the performance of the BPNN quantitative model of two terpenoids, and compared with the BP, whale optimization algorithm (WOA)-BP, sparrow optimization algorithm (SSA)-BP, grey wolf optimization (GWO)-BP and particle swarm optimization (PSO)-BP models. The results show that the CDBO-BPNN model has the smallest error and has a significant advantage in predicting the content of active components in different processed products. To sum up, it is feasible to use near infrared spectroscopy to quickly evaluate the effect of processing methods on the quality of Cyperus rotundus, which provides a meaningful reference for the quality control of traditional Chinese medicine with many other processing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强的铅笔完成签到 ,获得积分10
2秒前
3秒前
nano完成签到 ,获得积分10
4秒前
逍遥呱呱完成签到 ,获得积分10
7秒前
七人七发布了新的文献求助10
9秒前
11秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
123456777完成签到 ,获得积分10
20秒前
23秒前
Horizon完成签到 ,获得积分10
26秒前
27秒前
难搞哦发布了新的文献求助100
27秒前
英吉利25发布了新的文献求助10
30秒前
YZzzJ完成签到 ,获得积分10
34秒前
dd完成签到 ,获得积分10
41秒前
wefor完成签到 ,获得积分10
43秒前
卞卞完成签到,获得积分10
48秒前
4652376完成签到 ,获得积分10
52秒前
七人七发布了新的文献求助10
53秒前
future完成签到 ,获得积分10
54秒前
搜集达人应助科研通管家采纳,获得10
55秒前
Bryan应助科研通管家采纳,获得10
55秒前
Bryan应助科研通管家采纳,获得10
55秒前
脑洞疼应助七人七采纳,获得10
58秒前
酷酷小子完成签到 ,获得积分10
1分钟前
余呀余完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SOL完成签到 ,获得积分10
1分钟前
zhanlang完成签到 ,获得积分10
1分钟前
1分钟前
swordshine完成签到,获得积分10
1分钟前
郑雅柔完成签到 ,获得积分0
1分钟前
jixuchance完成签到,获得积分10
1分钟前
难搞哦发布了新的文献求助10
1分钟前
难搞哦发布了新的文献求助10
1分钟前
难搞哦发布了新的文献求助10
1分钟前
难搞哦发布了新的文献求助10
1分钟前
1分钟前
难搞哦发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008687
求助须知:如何正确求助?哪些是违规求助? 3548349
关于积分的说明 11298805
捐赠科研通 3283020
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218