18F-FDG PET/CT-based radiomics model for predicting the degree of pathological differentiation in non-small cell lung cancer: a multicentre study

医学 列线图 无线电技术 接收机工作特性 置信区间 肺癌 逻辑回归 曲线下面积 正电子发射断层摄影术 病态的 标准摄取值 核医学 放射科 内科学 肿瘤科
作者
Fan Liu,Zuo‐Lin Xiang,Qiao Li,Xin Fang,Jie Zhou,Xiao Yang,Huashan Lin,Qian Yang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (1): e147-e155 被引量:2
标识
DOI:10.1016/j.crad.2023.09.017
摘要

•Few reports on PET/CT radiomics to predict pathological differentiation of lung cancer. •We explored a non-invasive method to predict pathological differentiation in NSCLC. •Multicenter study may contribute to the robustness and generalizability of our model. AIM To explore the value of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. RESULTS Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2–4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64–0.84), 0.64 (95% CI = 0.46–0.81), and 0.74 (95% CI = 0.60–0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77–0.92]), internal validation (AUC: 0.81 [95% CI = 0.67–0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58–0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78–0.93), 0.83 (95% CI = 0.70–0.96), and 0.77 (95% CI = 0.62–0.92), respectively. CONCLUSIONS The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance. To explore the value of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC). Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2–4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64–0.84), 0.64 (95% CI = 0.46–0.81), and 0.74 (95% CI = 0.60–0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77–0.92]), internal validation (AUC: 0.81 [95% CI = 0.67–0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58–0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78–0.93), 0.83 (95% CI = 0.70–0.96), and 0.77 (95% CI = 0.62–0.92), respectively. The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助huangqx采纳,获得10
1秒前
研友_Lmb15n完成签到,获得积分10
1秒前
科研通AI2S应助名金学南采纳,获得10
1秒前
2秒前
2秒前
三硕驳回了勿明应助
2秒前
Lucas应助melody采纳,获得10
2秒前
3秒前
Pan发布了新的文献求助10
4秒前
梦中有琦完成签到,获得积分10
4秒前
yecheng给yecheng的求助进行了留言
4秒前
4秒前
5秒前
Connie完成签到,获得积分10
6秒前
风清扬应助激光炮砰砰砰采纳,获得10
6秒前
风清扬应助激光炮砰砰砰采纳,获得10
6秒前
风清扬应助激光炮砰砰砰采纳,获得10
6秒前
罗中翠发布了新的文献求助20
6秒前
传奇3应助激光炮砰砰砰采纳,获得10
6秒前
风清扬应助激光炮砰砰砰采纳,获得10
6秒前
852应助激光炮砰砰砰采纳,获得10
7秒前
zho应助激光炮砰砰砰采纳,获得10
7秒前
7秒前
顾矜应助激光炮砰砰砰采纳,获得10
7秒前
7秒前
7秒前
xiaowang发布了新的文献求助10
7秒前
傅宛白完成签到,获得积分10
7秒前
7秒前
celinewu完成签到,获得积分10
7秒前
ivy完成签到,获得积分10
8秒前
龙抬头发布了新的文献求助10
8秒前
冫峯完成签到,获得积分10
9秒前
赵子曰发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
10秒前
霖霖发布了新的文献求助10
10秒前
11秒前
张秋雨发布了新的文献求助30
11秒前
欣慰白山应助huangqx采纳,获得10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4017023
求助须知:如何正确求助?哪些是违规求助? 3557119
关于积分的说明 11323948
捐赠科研通 3289980
什么是DOI,文献DOI怎么找? 1812637
邀请新用户注册赠送积分活动 888165
科研通“疑难数据库(出版商)”最低求助积分说明 812158