已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

18F-FDG PET/CT-based radiomics model for predicting the degree of pathological differentiation in non-small cell lung cancer: a multicentre study

医学 列线图 无线电技术 接收机工作特性 置信区间 肺癌 逻辑回归 曲线下面积 正电子发射断层摄影术 病态的 标准摄取值 核医学 放射科 内科学 肿瘤科
作者
Fan Liu,Zuo‐Lin Xiang,Qiao Li,Xin Fang,Jie Zhou,Xiao Yang,Huashan Lin,Qian Yang
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:79 (1): e147-e155 被引量:2
标识
DOI:10.1016/j.crad.2023.09.017
摘要

•Few reports on PET/CT radiomics to predict pathological differentiation of lung cancer. •We explored a non-invasive method to predict pathological differentiation in NSCLC. •Multicenter study may contribute to the robustness and generalizability of our model. AIM To explore the value of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. RESULTS Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2–4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64–0.84), 0.64 (95% CI = 0.46–0.81), and 0.74 (95% CI = 0.60–0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77–0.92]), internal validation (AUC: 0.81 [95% CI = 0.67–0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58–0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78–0.93), 0.83 (95% CI = 0.70–0.96), and 0.77 (95% CI = 0.62–0.92), respectively. CONCLUSIONS The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance. To explore the value of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC). Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2–4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64–0.84), 0.64 (95% CI = 0.46–0.81), and 0.74 (95% CI = 0.60–0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77–0.92]), internal validation (AUC: 0.81 [95% CI = 0.67–0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58–0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78–0.93), 0.83 (95% CI = 0.70–0.96), and 0.77 (95% CI = 0.62–0.92), respectively. The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定的小馒头完成签到 ,获得积分10
刚刚
2224270676完成签到,获得积分10
刚刚
顺利山柏完成签到 ,获得积分10
1秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
2秒前
英属维尔京群岛完成签到 ,获得积分10
2秒前
思源应助聪明勇敢有力气采纳,获得10
2秒前
科研小趴菜完成签到 ,获得积分10
2秒前
yuxin完成签到 ,获得积分10
3秒前
疯狂喵完成签到 ,获得积分10
6秒前
平常的羊完成签到 ,获得积分10
6秒前
6秒前
童童完成签到 ,获得积分10
6秒前
虚幻的道天完成签到 ,获得积分10
6秒前
默笙完成签到 ,获得积分10
7秒前
vida完成签到 ,获得积分10
7秒前
undertaker完成签到,获得积分10
7秒前
小黑完成签到 ,获得积分10
8秒前
清脆凡阳完成签到 ,获得积分10
8秒前
酶没美镁完成签到,获得积分10
9秒前
Enckson完成签到,获得积分10
10秒前
10秒前
Yi完成签到,获得积分10
11秒前
11秒前
11秒前
围城完成签到 ,获得积分10
11秒前
图图完成签到 ,获得积分10
12秒前
goodltl完成签到 ,获得积分10
12秒前
DDL完成签到 ,获得积分10
13秒前
klio完成签到 ,获得积分10
13秒前
123完成签到 ,获得积分10
13秒前
不知雪落完成签到,获得积分10
13秒前
忧伤的映阳完成签到 ,获得积分10
13秒前
英勇羿完成签到,获得积分10
13秒前
KyraC完成签到 ,获得积分10
14秒前
14秒前
boyushen发布了新的文献求助10
14秒前
李爱国应助eternal采纳,获得10
15秒前
suz发布了新的文献求助10
15秒前
徐徐图之完成签到 ,获得积分10
16秒前
adam完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063093
求助须知:如何正确求助?哪些是违规求助? 4286796
关于积分的说明 13357821
捐赠科研通 4104747
什么是DOI,文献DOI怎么找? 2247641
邀请新用户注册赠送积分活动 1253171
关于科研通互助平台的介绍 1184163

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10