已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

18F-FDG PET/CT-based radiomics model for predicting the degree of pathological differentiation in non-small cell lung cancer: a multicentre study

医学 列线图 无线电技术 接收机工作特性 置信区间 肺癌 逻辑回归 曲线下面积 正电子发射断层摄影术 病态的 标准摄取值 核医学 放射科 内科学 肿瘤科
作者
Fan Liu,Zuo‐Lin Xiang,Qiao Li,Xin Fang,Jie Zhou,Xiao Yang,Huashan Lin,Qian Yang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (1): e147-e155 被引量:2
标识
DOI:10.1016/j.crad.2023.09.017
摘要

•Few reports on PET/CT radiomics to predict pathological differentiation of lung cancer. •We explored a non-invasive method to predict pathological differentiation in NSCLC. •Multicenter study may contribute to the robustness and generalizability of our model. AIM To explore the value of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. RESULTS Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2–4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64–0.84), 0.64 (95% CI = 0.46–0.81), and 0.74 (95% CI = 0.60–0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77–0.92]), internal validation (AUC: 0.81 [95% CI = 0.67–0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58–0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78–0.93), 0.83 (95% CI = 0.70–0.96), and 0.77 (95% CI = 0.62–0.92), respectively. CONCLUSIONS The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance. To explore the value of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC). Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2–4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64–0.84), 0.64 (95% CI = 0.46–0.81), and 0.74 (95% CI = 0.60–0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77–0.92]), internal validation (AUC: 0.81 [95% CI = 0.67–0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58–0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78–0.93), 0.83 (95% CI = 0.70–0.96), and 0.77 (95% CI = 0.62–0.92), respectively. The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐以冬完成签到 ,获得积分10
1秒前
1秒前
想想发布了新的文献求助10
2秒前
3秒前
4秒前
真不错发布了新的文献求助10
4秒前
sunhhhh完成签到 ,获得积分10
5秒前
慕青应助微笑的傲旋采纳,获得10
6秒前
木风2023完成签到,获得积分10
6秒前
7秒前
狂野雅彤发布了新的文献求助10
8秒前
真不错完成签到,获得积分10
11秒前
思源应助DD采纳,获得10
13秒前
14秒前
14秒前
天天快乐应助好天气采纳,获得10
17秒前
21秒前
CipherSage应助科研通管家采纳,获得10
22秒前
无极微光应助科研通管家采纳,获得20
22秒前
归尘应助科研通管家采纳,获得30
22秒前
归尘应助科研通管家采纳,获得30
22秒前
归尘应助科研通管家采纳,获得30
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
xxfsx应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
22秒前
归尘应助科研通管家采纳,获得30
22秒前
23秒前
淳于惜雪完成签到 ,获得积分10
23秒前
23秒前
达布妞发布了新的文献求助10
24秒前
-17完成签到 ,获得积分10
24秒前
25秒前
小马甲应助直率孤风采纳,获得10
26秒前
领导范儿应助Rzozsye采纳,获得10
28秒前
chen完成签到,获得积分10
29秒前
ifly发布了新的文献求助10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488216
求助须知:如何正确求助?哪些是违规求助? 4587188
关于积分的说明 14412948
捐赠科研通 4518460
什么是DOI,文献DOI怎么找? 2475790
邀请新用户注册赠送积分活动 1461373
关于科研通互助平台的介绍 1434279