18F-FDG PET/CT-based radiomics model for predicting the degree of pathological differentiation in non-small cell lung cancer: a multicentre study

医学 列线图 无线电技术 接收机工作特性 置信区间 肺癌 逻辑回归 曲线下面积 正电子发射断层摄影术 病态的 标准摄取值 核医学 放射科 内科学 肿瘤科
作者
Fan Liu,Zuo‐Lin Xiang,Qiao Li,Xin Fang,Jie Zhou,Xiao Yang,Huashan Lin,Qian Yang
出处
期刊:Clinical Radiology [Elsevier]
卷期号:79 (1): e147-e155 被引量:2
标识
DOI:10.1016/j.crad.2023.09.017
摘要

•Few reports on PET/CT radiomics to predict pathological differentiation of lung cancer. •We explored a non-invasive method to predict pathological differentiation in NSCLC. •Multicenter study may contribute to the robustness and generalizability of our model. AIM To explore the value of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. RESULTS Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2–4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64–0.84), 0.64 (95% CI = 0.46–0.81), and 0.74 (95% CI = 0.60–0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77–0.92]), internal validation (AUC: 0.81 [95% CI = 0.67–0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58–0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78–0.93), 0.83 (95% CI = 0.70–0.96), and 0.77 (95% CI = 0.62–0.92), respectively. CONCLUSIONS The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance. To explore the value of 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET)/computed tomography (CT)-based radiomics model for predicting the degree of pathological differentiation in non-small-cell lung cancer (NSCLC). Clinical characteristics of 182 NSCLC patients from four centres were collected, and radiomics features were extracted from 18F-FDG PET/CT images. Three logistic regression prediction models were established: clinical model; radiomics model; and nomogram combining radiomics signatures and clinical features. The predictive ability of the models was assessed using receiver operating characteristics curve analysis. Patients from centre 1 were assigned randomly to the training and internal validation cohorts (7:3 ratio); patients from centres 2–4 served as the external validation cohort. The area under the curve (AUC) values for the clinical model in the training, internal validation, and external validation cohort were 0.74 (95% confidence interval [CI] = 0.64–0.84), 0.64 (95% CI = 0.46–0.81), and 0.74 (95% CI = 0.60–0.88), respectively. In the training (AUC: 0.84 [95% CI = 0.77–0.92]), internal validation (AUC: 0.81 [95% CI = 0.67–0.95]), and external validation cohorts (AUC: 0.74 [95% CI = 0.58–0.89]), the radiomics model showed good predictive ability for differentiation. Compared to the clinical and radiomics models, the nomogram has relatively better diagnostic performance, and the AUC values for nomogram in the training, internal validation, and external validation cohort were 0.86 (95% CI = 0.78–0.93), 0.83 (95% CI = 0.70–0.96), and 0.77 (95% CI = 0.62–0.92), respectively. The 18F-FDG PET/CT-based radiomics model showed good ability for predicting the degree of differentiation of NSCLC. The nomogram combining the radiomics signature and clinical features has relatively better diagnostic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
小马甲应助勤恳易谙采纳,获得10
1秒前
bkagyin应助yunlei采纳,获得10
1秒前
义气饼干完成签到,获得积分10
2秒前
Owen应助QG采纳,获得10
2秒前
rain完成签到,获得积分10
2秒前
小二郎应助BouncyTree采纳,获得10
2秒前
丘比特应助小柴采纳,获得10
2秒前
CipherSage应助现在采纳,获得10
2秒前
瑶啊瑶完成签到,获得积分10
3秒前
3秒前
wanci应助侃侃采纳,获得10
3秒前
3秒前
花灯王子发布了新的文献求助10
3秒前
硕士发布了新的文献求助30
4秒前
smm发布了新的文献求助10
4秒前
yuanyueyue发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
David Zhang发布了新的文献求助10
7秒前
YY完成签到 ,获得积分10
7秒前
54132123发布了新的文献求助10
7秒前
Royalll发布了新的文献求助10
7秒前
jay发布了新的文献求助10
8秒前
上官若男应助兴奋的问旋采纳,获得10
8秒前
LoganLee发布了新的文献求助10
8秒前
8秒前
义气饼干发布了新的文献求助10
9秒前
10秒前
11秒前
科研通AI6.1应助稻草采纳,获得10
11秒前
11秒前
12秒前
ljh发布了新的文献求助10
12秒前
12秒前
12秒前
zjj完成签到,获得积分10
12秒前
Xhhaai应助Ripples采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106