数学
非线性系统
规范(哲学)
伽辽金法
数学分析
操作员(生物学)
应用数学
流离失所(心理学)
趋同(经济学)
变量(数学)
间断伽辽金法
有限元法
物理
生物化学
心理学
心理治疗师
法学
政治学
经济增长
化学
经济
抑制因子
量子力学
转录因子
基因
热力学
作者
Kui Ren,Lu Zhang,Yin Zhou
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2311.06474
摘要
This work develops an energy-based discontinuous Galerkin (EDG) method for the nonlinear Schr\"odinger equation with the wave operator. The focus of the study is on the energy-conserving or energy-dissipating behavior of the method with some simple mesh-independent numerical fluxes we designed. We establish error estimates in the energy norm that require careful selection of a test function for the auxiliary equation involving the time derivative of the displacement variable. A critical part of the convergence analysis is to establish the L2 error bounds for the time derivative of the approximation error in the displacement variable by using the equation that determines its mean value. Using a specially chosen test function, we show that one can create a linear system for the time evolution of the unknowns even when dealing with nonlinear properties in the original problem. Extensive numerical experiments are provided to demonstrate the optimal convergence of the scheme in the L2 norm with our choices of the numerical flux.
科研通智能强力驱动
Strongly Powered by AbleSci AI