Emotional intelligence of Large Language Models

情商 主流 心理学 人类智力 认知心理学 社会心理学 发展心理学 政治学 法学
作者
Xuena Wang,Xueting Li,Zi Yin,Yue Wu,Jia Liu
出处
期刊:Journal of Pacific Rim Psychology [SAGE]
卷期号:17 被引量:12
标识
DOI:10.1177/18344909231213958
摘要

Large Language Models (LLMs) have demonstrated remarkable abilities across numerous disciplines, primarily assessed through tasks in language generation, knowledge utilization, and complex reasoning. However, their alignment with human emotions and values, which is critical for real-world applications, has not been systematically evaluated. Here, we assessed LLMs' Emotional Intelligence (EI), encompassing emotion recognition, interpretation, and understanding, which is necessary for effective communication and social interactions. Specifically, we first developed a novel psychometric assessment focusing on Emotion Understanding (EU), a core component of EI. This test is an objective, performance-driven, and text-based evaluation, which requires evaluating complex emotions in realistic scenarios, providing a consistent assessment for both human and LLM capabilities. With a reference frame constructed from over 500 adults, we tested a variety of mainstream LLMs. Most achieved above-average Emotional Quotient (EQ) scores, with GPT-4 exceeding 89% of human participants with an EQ of 117. Interestingly, a multivariate pattern analysis revealed that some LLMs apparently did not rely on the human-like mechanism to achieve human-level performance, as their representational patterns were qualitatively distinct from humans. In addition, we discussed the impact of factors such as model size, training method, and architecture on LLMs' EQ. In summary, our study presents one of the first psychometric evaluations of the human-like characteristics of LLMs, which may shed light on the future development of LLMs aiming for both high intellectual and emotional intelligence. Project website: https://emotional-intelligence.github.io/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初南发布了新的文献求助10
刚刚
刚刚
1秒前
调研昵称发布了新的文献求助10
2秒前
2秒前
小羽完成签到,获得积分10
2秒前
2秒前
4秒前
5秒前
5秒前
NIUBEN发布了新的文献求助10
5秒前
Stephen发布了新的文献求助10
6秒前
Francis_完成签到,获得积分10
8秒前
8秒前
wss完成签到,获得积分10
8秒前
左彦完成签到,获得积分10
8秒前
明天过后完成签到,获得积分10
8秒前
调研昵称发布了新的文献求助10
9秒前
帆帆发布了新的文献求助10
9秒前
深情安青应助清汤不加盐采纳,获得10
9秒前
9秒前
Dr.c发布了新的文献求助10
9秒前
烟花应助SEAMUS采纳,获得10
10秒前
不配.应助一路硕博采纳,获得20
10秒前
10秒前
今后应助魁梧的灵枫采纳,获得10
10秒前
DouDou完成签到,获得积分10
11秒前
13秒前
hahaha完成签到 ,获得积分10
13秒前
DouDou发布了新的文献求助10
15秒前
赘婿应助小陈采纳,获得10
15秒前
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
LL来了完成签到 ,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144189
求助须知:如何正确求助?哪些是违规求助? 2795795
关于积分的说明 7816709
捐赠科研通 2451879
什么是DOI,文献DOI怎么找? 1304729
科研通“疑难数据库(出版商)”最低求助积分说明 627286
版权声明 601419