Intelligent optimization: Literature review and state-of-the-art algorithms (1965–2022)

计算机科学 灵活性(工程) 软计算 领域(数学) 人工智能 群体智能 工程优化 钥匙(锁) 排名(信息检索) 元启发式 进化算法 算法 机器学习 启发式 粒子群优化 最优化问题 人工神经网络 统计 数学 计算机安全 纯数学
作者
Ali Mohammadi,Farid Sheikholeslam
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:126: 106959-106959 被引量:55
标识
DOI:10.1016/j.engappai.2023.106959
摘要

Today, intelligent optimization has become a science that few researchers have not used in dealing with problems in their field. Diversity and flexibility have made the use, efficiency, and usefulness of various nature-inspired optimization methods, such as evolutionary and meta-heuristic algorithms, more evident in such problems. This work first provides a comprehensive overview of all considerations governing various optimization problems with detailed corresponding categories. Then, the most comprehensive review and recent methods (during 1965–2022) are presented in evolution-based, swarm-based, physics-based, human-based, and hybrid-based categories. More than 320 new algorithms have been reviewed. All specifications including authors, year, abbreviation, inspired source, controls, and their application are considered in this regard. Statistical analyzes of papers and publishers, annually and for 57 years, along with their ranking, are also examined in detail. Among the key achievements of the paper include: the most number of algorithms with 47.71% (156 methods) have been from the swarm category, and most of them were published in the five years of 2021 (72, 22.02%), 2020 (39, 11.93%), 2022 (31, 9.48%), 2019 (26, 7.95%), and 2016 (21, 6.42%) respectively; the top five rankings of publishers of reviewed algorithms/papers were also: "Proceedings of the Congress" (33, 10.09%), "Applied Soft Computing" (19, 5.81%), "Expert Systems with Applications" (18, 5.51%), "Knowledge-Based Systems" (12, 3.67%), "Engineering Applications of Artificial Intelligence" (12, 3.67%), "Advances in Engineering Software" (12, 3.67%), " Neural Computing and Applications " (12, 3.67%), and " Information Sciences " (11, 3.36%). The paper's data is available at: https://github.com/ali-ece.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ontheway发布了新的文献求助10
刚刚
LeeFY应助kk采纳,获得10
刚刚
小蘑菇发布了新的文献求助20
刚刚
刚刚
萝卜_赞完成签到,获得积分10
1秒前
冷月寒寒大魔王给冷月寒寒大魔王的求助进行了留言
1秒前
南宫清涟应助ZZH采纳,获得10
2秒前
2秒前
cooling发布了新的文献求助10
2秒前
Ava应助Mia采纳,获得10
2秒前
Dream发布了新的文献求助10
2秒前
syy080837发布了新的文献求助10
2秒前
3秒前
斯文败类应助光亮绮山采纳,获得10
3秒前
只然完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
邓佳鑫Alan应助岁城采纳,获得10
4秒前
焦大大完成签到,获得积分10
4秒前
嘿休休发布了新的文献求助10
4秒前
所所应助1111采纳,获得10
4秒前
5秒前
阔达代芹发布了新的文献求助10
5秒前
华仔应助王大力采纳,获得10
5秒前
zgw发布了新的文献求助10
5秒前
椰椰豆沙应助ctttt采纳,获得10
6秒前
111完成签到 ,获得积分10
6秒前
6秒前
敬之发布了新的文献求助10
6秒前
yk完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
周小鱼发布了新的文献求助10
8秒前
善学以致用应助整齐的刚采纳,获得10
8秒前
Susco发布了新的文献求助10
8秒前
冷酷愚志完成签到,获得积分10
9秒前
lulu666发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482