Microstructure evolution under thermo-mechanical operating of rocksalt-structure TiN via neural network potential

材料科学 人工神经网络 微观结构 复合材料 计算机科学 冶金 人工智能
作者
Fangyu Guo,Bo Chen,Qiyu Zeng,Xiaoxiang Yu,Kaiguo Chen,Dongdong Kang,Yong Du,Jian Wu,Jiayu Dai
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (20)
标识
DOI:10.1063/5.0171528
摘要

In the process of high temperature service, the mechanical properties of cutting tools decrease sharply due to the peeling of the protective coating. However, the mechanism of such coating failure remains obscure due to the complicated interaction between atomic structure, temperature, and stress. This dynamic evolution nature demands both large system sizes and accurate description on the atomic scale, raising challenges for existing atomic scale calculation methods. Here, we developed a deep neural network (DNN) potential for Ti-N binary systems based on first-principles study datasets to achieve quantum-accurate large-scale atomic simulation. Compared with empirical interatomic potential based on the embedded-atom-method, the developed DNN-potential can accurately predict lattice constants, phonon properties, and mechanical properties under various thermodynamic conditions. Moreover, for the first time, we present the atomic evolution of the fracture behavior of large-scale rocksalt-structure (B1) TiN systems coupled with temperature and stress conditions. Our study validates that interatomic brittle fractures occur when TiN stretches beyond its tensile yield point. Such simulation of coating fracture and cutting behavior based on large-scale atoms can shed new light on understanding the microstructure and mechanical properties of coating tools under extreme operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呆呆完成签到,获得积分10
2秒前
甘博完成签到,获得积分10
2秒前
花开半夏完成签到,获得积分10
3秒前
wangxipeng发布了新的文献求助10
3秒前
整齐思天完成签到,获得积分10
4秒前
5秒前
Jasper应助辰岚采纳,获得10
5秒前
烟花应助不上课不行采纳,获得30
5秒前
漂亮妙柏完成签到,获得积分10
5秒前
5秒前
追风少侠李二狗完成签到,获得积分10
6秒前
自由的猫咪完成签到 ,获得积分10
6秒前
7秒前
量子星尘发布了新的文献求助150
7秒前
Joyj99完成签到,获得积分10
7秒前
DocRyan完成签到,获得积分20
8秒前
selfevidbet完成签到,获得积分10
9秒前
哈哈哈完成签到,获得积分10
9秒前
漂亮妙柏发布了新的文献求助10
9秒前
10秒前
wwj1009完成签到 ,获得积分10
10秒前
10秒前
11秒前
上好佳完成签到,获得积分10
11秒前
huangJP发布了新的文献求助10
12秒前
ysj发布了新的文献求助100
12秒前
wangxipeng完成签到,获得积分10
13秒前
water应助左丘傲菡采纳,获得10
13秒前
13秒前
xiaopan完成签到,获得积分10
13秒前
小周完成签到 ,获得积分10
14秒前
14秒前
连山发布了新的文献求助10
15秒前
kingwill应助HHH采纳,获得20
15秒前
DocRyan发布了新的文献求助10
15秒前
16秒前
16秒前
危机的慕卉完成签到 ,获得积分10
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960462
求助须知:如何正确求助?哪些是违规求助? 3506587
关于积分的说明 11131436
捐赠科研通 3238853
什么是DOI,文献DOI怎么找? 1789898
邀请新用户注册赠送积分活动 872032
科研通“疑难数据库(出版商)”最低求助积分说明 803118