Microstructure evolution under thermo-mechanical operating of rocksalt-structure TiN via neural network potential

材料科学 人工神经网络 微观结构 复合材料 计算机科学 冶金 人工智能
作者
Fangyu Guo,Bo Chen,Qiyu Zeng,Xiaoxiang Yu,Kaiguo Chen,Dongdong Kang,Yong Du,Jian Wu,Jiayu Dai
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (20)
标识
DOI:10.1063/5.0171528
摘要

In the process of high temperature service, the mechanical properties of cutting tools decrease sharply due to the peeling of the protective coating. However, the mechanism of such coating failure remains obscure due to the complicated interaction between atomic structure, temperature, and stress. This dynamic evolution nature demands both large system sizes and accurate description on the atomic scale, raising challenges for existing atomic scale calculation methods. Here, we developed a deep neural network (DNN) potential for Ti-N binary systems based on first-principles study datasets to achieve quantum-accurate large-scale atomic simulation. Compared with empirical interatomic potential based on the embedded-atom-method, the developed DNN-potential can accurately predict lattice constants, phonon properties, and mechanical properties under various thermodynamic conditions. Moreover, for the first time, we present the atomic evolution of the fracture behavior of large-scale rocksalt-structure (B1) TiN systems coupled with temperature and stress conditions. Our study validates that interatomic brittle fractures occur when TiN stretches beyond its tensile yield point. Such simulation of coating fracture and cutting behavior based on large-scale atoms can shed new light on understanding the microstructure and mechanical properties of coating tools under extreme operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助冷酷的雅寒采纳,获得10
1秒前
合适的平安完成签到 ,获得积分10
1秒前
乐观又lucky完成签到,获得积分10
2秒前
zxy发布了新的文献求助10
2秒前
3秒前
yacon完成签到,获得积分10
3秒前
Xx.完成签到,获得积分20
4秒前
4秒前
zjz完成签到,获得积分10
4秒前
rxl发布了新的文献求助10
4秒前
Suagy完成签到 ,获得积分20
4秒前
5秒前
坚强的代曼完成签到,获得积分10
5秒前
曾经豌豆发布了新的文献求助10
5秒前
NexusExplorer应助尊敬寒松采纳,获得10
6秒前
6秒前
今后应助一张不够花采纳,获得10
6秒前
wwh完成签到,获得积分10
7秒前
7秒前
倔强的大萝卜完成签到,获得积分0
7秒前
激昂的亦竹完成签到 ,获得积分10
7秒前
NexusExplorer应助非也的非也采纳,获得10
7秒前
Xx.发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
赘婿应助Heheya采纳,获得10
10秒前
10秒前
幻心完成签到,获得积分10
11秒前
烟花应助wwh采纳,获得10
12秒前
沉默的莞发布了新的文献求助10
12秒前
12秒前
dddww完成签到,获得积分10
12秒前
13秒前
13秒前
桐桐应助lettuce采纳,获得10
13秒前
13秒前
科研通AI2S应助独立卫生间采纳,获得10
14秒前
冷静的缘分完成签到 ,获得积分10
14秒前
njseu发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655