Impacts of urbanisation on vegetation dynamics in Chinese cities

城市化 中国 地理 植被(病理学) 绿化 初级生产 降水 自然地理学 生态系统服务 生态系统 环境保护 生态学 气象学 医学 考古 病理 生物
作者
Zhijie Zhang,Wenwu Zhao,Yue Liu,Paulo Pereira
出处
期刊:Environmental Impact Assessment Review [Elsevier]
卷期号:103: 107227-107227 被引量:13
标识
DOI:10.1016/j.eiar.2023.107227
摘要

Urbanisation is a global phenomenon that dramatically impacts ecosystems and their services. In recent years, urbanisation in China increased substantially. To improve the urban environment, the Chinese government has implemented several programs to green the cities' central areas and limit forest and grasslands in expanding areas. However, more information is needed about the trend and the factors affecting vegetation status in urban centres and expanding areas. Here we studied the vegetation in these areas in 3345 cities in China using 30 m spatial resolution Annual Net Primary Production (NPP) Change (ANC) and NPP Change Rate (ANCR) in 2000 and 2020. The results showed that most Chinese cities' central areas have a greening trend. However, vegetation cover decreases in expansion areas, mainly in southern cities. The opposite is observed in some urban areas in the country's North. This is mostly attributed to the highest urbanisation trends observed in the South than in the North. The most important factors that affected the ANC trend were mean temperature/precipitation, expansion area, and CO2 changes. ANCR was mainly affected by mean temperature/precipitation. Political decisions such as increasing the greening areas in city centres in China also affected the increase of vegetation in urban cores. In some cities located in the North, the investment in green infrastructure in expansion areas may have also contributed to increased vegetation. The results are important for managers to improve cities' livability, especially in the South of China, where the degradation of the ecosystems is high in expansion areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
筱er关注了科研通微信公众号
1秒前
thynkz发布了新的文献求助10
2秒前
guoyx发布了新的文献求助10
3秒前
YY完成签到,获得积分20
3秒前
yogurt完成签到,获得积分10
5秒前
pluto应助迅速的婷冉采纳,获得10
5秒前
旭宝儿发布了新的文献求助10
5秒前
5秒前
wzx完成签到,获得积分20
8秒前
董绮敏发布了新的文献求助10
9秒前
soapffz完成签到,获得积分10
14秒前
山茶完成签到,获得积分10
15秒前
善良的翼完成签到 ,获得积分10
15秒前
15秒前
16秒前
小雨完成签到,获得积分10
19秒前
七喜发布了新的文献求助10
21秒前
21秒前
22秒前
wzx发布了新的文献求助10
22秒前
筱er发布了新的文献求助10
23秒前
残忆完成签到 ,获得积分10
23秒前
24秒前
27秒前
调皮帆布鞋完成签到,获得积分10
27秒前
小方完成签到 ,获得积分10
28秒前
lulu发布了新的文献求助30
29秒前
upon发布了新的文献求助10
30秒前
31秒前
31秒前
31秒前
camelia关注了科研通微信公众号
36秒前
37秒前
thynkz发布了新的文献求助10
37秒前
科目三应助拾捌采纳,获得10
38秒前
ASIS完成签到,获得积分10
39秒前
舒心莫言完成签到,获得积分10
39秒前
慕青应助平淡的碧菡采纳,获得10
43秒前
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079