亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Experimental investigation of heat transfer performance in gas-atomized spray cooling

材料科学 传热 临界热流密度 热流密度 传热系数 喷嘴 热力学 喷雾特性 过热 流量(数学) 机械 强化传热 强化传热 喷嘴 复合材料 气象学 物理
作者
Yulong Zhao,Siyuan Gong,Qingshuang Yang,Zhiwei Xuan,Wenjie Li,Liyao Xie,Liansheng Liu,Meng Ge
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:218: 124768-124768 被引量:4
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124768
摘要

Spray cooling has substantial potential for wide application, given its unique characteristics, including high heat transfer coefficient, absence of contact thermal resistance, and the elimination of cooling hysteresis. In this study, a visualized experimental system featuring a gas-liquid two-phase cyclonic nozzle was constructed to study both the heat transfer and fluid morphology features pertaining to the wall. With the increase of wall superheat, a progressive transition across four distinct stages of heat transfer – liquid film, stream flow, droplet flow, and mist flow can be found. Of these, the droplet flow stage outperforms others in terms of heat transfer performance and is thus advocated as the preferred mode of application. In response to increasing spray pressure, the droplets generated on the wall during the droplet flow stage undergo a reduction in size, yet become more densely distributed. A notable increase in critical heat flux by 59.5 % is observed when spray pressure is elevated from 0.2 to 0.4 MPa. While raising the spray flow rate leaves the heat transfer performance during the liquid film stage largely unchanged, it effects a significant augmentation in critical heat flux. Our experimental results ultimately obtain the optimal operating parameters that facilitate the wall surface's retention in the droplet flow stage. These experimental results are poised to contribute meaningfully to the engineering practices associated with spray cooling applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿冰完成签到,获得积分10
6秒前
19秒前
失眠思远发布了新的文献求助10
24秒前
科研通AI5应助科研通管家采纳,获得10
41秒前
47秒前
YZH发布了新的文献求助20
52秒前
lhn完成签到 ,获得积分10
1分钟前
汉堡包应助米儿采纳,获得10
2分钟前
执着的忻发布了新的文献求助10
2分钟前
2分钟前
2分钟前
hu完成签到,获得积分10
2分钟前
hu发布了新的文献求助10
2分钟前
2分钟前
YZH完成签到,获得积分10
2分钟前
狂野的安彤完成签到,获得积分10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
破茧发布了新的文献求助10
4分钟前
cacaldon完成签到,获得积分10
4分钟前
执着的忻完成签到,获得积分10
5分钟前
5分钟前
米儿发布了新的文献求助10
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
科研通AI5应助科研通管家采纳,获得30
6分钟前
nick完成签到,获得积分10
6分钟前
7分钟前
yuqian发布了新的文献求助10
7分钟前
yuqian完成签到,获得积分20
7分钟前
TXZ06完成签到,获得积分10
7分钟前
nav完成签到 ,获得积分10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI5应助科研通管家采纳,获得10
8分钟前
zh完成签到 ,获得积分10
9分钟前
9分钟前
火星完成签到 ,获得积分10
10分钟前
一颗忧伤的覆盆子完成签到,获得积分10
10分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491347
求助须知:如何正确求助?哪些是违规求助? 3077934
关于积分的说明 9151255
捐赠科研通 2770497
什么是DOI,文献DOI怎么找? 1520516
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298