Rapid design and screen high strength U-based high-entropy alloys from first-principles calculations

五元 材料科学 合金 三元运算 高熵合金 延展性(地球科学) 价电子 热力学 复合材料 计算机科学 电子 蠕动 物理 量子力学 程序设计语言
作者
Xingge Xu,Hualei Zhang,Xiangdong Ding,Jun Sun
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:179: 174-186 被引量:4
标识
DOI:10.1016/j.jmst.2023.07.077
摘要

Reducing the exploration of multi-principal element alloy space is a key challenge to design high-performance U-based high-entropy alloy (UHEA). Here, the best combination of multi-principal element can be efficiently acquired because proposed alloying strategy and screening criteria can substantially reduce the space of alloy and thus accelerate alloy design, rather than enormous random combinations through a trial-and-error approach. To choose the best seed alloy and suitable dopants, the screening criteria include small anisotropy, high specific modulus, high dynamical stability, and high ductility. We therefore find a shortcut to design UHEA from typical binary (UTi and UNb) to ternary (UTiNb), quaternary (UTiNbTa), and quinary (UTiNbTaFe). Finally, we find a best bcc senary UHEA (UTiNbTaFeMo), which has highest hardness and yield strength, while maintains good ductility among all the candidates. Compared to overestimation from empirical strength-hardness relationship, improved strength prediction can be achieved using a parameter-free theory considering volume mismatch and temperature effect on yield strength. This finding indicates that larger volume mismatch corresponds to higher yield strength, agreeing with the available measurements. Moreover, the dynamical stability and mechanical properties of candidates are greatly enhanced with increasing the number of multi-principal element, indicating the feasibility and effectiveness of adopted alloying strategy. The increasing of multi-principal element corresponds to the increasing valence electron concentration (VEC). Alternatively, the mechanical properties significantly improve as increasing VEC, agreeing with measurements for other various bcc HEAs. This work can speed up research and development of advanced UHEA by greatly reducing the space of alloy composition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起司嗯发布了新的文献求助30
刚刚
长虹完成签到,获得积分10
刚刚
1秒前
vision发布了新的文献求助10
2秒前
桑榆非晚完成签到,获得积分10
2秒前
hui完成签到,获得积分20
2秒前
baby的跑男完成签到,获得积分10
2秒前
Faith完成签到,获得积分10
3秒前
3秒前
Mercurius完成签到,获得积分10
4秒前
4秒前
4秒前
ganzhongxin完成签到,获得积分10
4秒前
12356完成签到,获得积分10
4秒前
5秒前
今后应助白华苍松采纳,获得10
5秒前
跳跃乘风发布了新的文献求助20
5秒前
不舍天真发布了新的文献求助20
6秒前
坚强的樱发布了新的文献求助10
6秒前
温暖以蓝发布了新的文献求助10
6秒前
6秒前
wanci应助幸福胡萝卜采纳,获得10
6秒前
6秒前
Ych发布了新的文献求助10
6秒前
gjy完成签到,获得积分10
7秒前
vision完成签到,获得积分10
7秒前
小小发布了新的文献求助10
7秒前
Katie完成签到,获得积分10
7秒前
LT发布了新的文献求助10
7秒前
8秒前
科研人完成签到,获得积分10
8秒前
FashionBoy应助彭彭采纳,获得10
8秒前
赤邪发布了新的文献求助10
9秒前
Owen应助lwei采纳,获得10
9秒前
shelly0621给shelly0621的求助进行了留言
9秒前
青木蓝完成签到,获得积分10
9秒前
9秒前
迅速泽洋完成签到,获得积分10
10秒前
dan1029完成签到,获得积分10
10秒前
小王完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762