Domain Generalization via Aggregation and Separation for Audio Deepfake Detection

计算机科学 概化理论 过度拟合 特征(语言学) 一般化 特征向量 人工智能 领域(数学分析) 外推法 卷积神经网络 模式识别(心理学) 语音识别 骨料(复合) 频域 机器学习 人工神经网络 数学 语言学 统计 数学分析 哲学 计算机视觉 复合材料 材料科学
作者
Yuankun Xie,Haonan Cheng,Yutian Wang,Long Ye
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 344-358 被引量:10
标识
DOI:10.1109/tifs.2023.3324724
摘要

In this paper, we propose an Aggregation and Separation Domain Generalization (ASDG) method for Audio DeepFake Detection (ADD). Fake speech generated from different methods exhibits varied amplitude and frequency distributions rather than genuine speech. In addition, the spoofing attacks in training sets may not keep pace with the evolving diversity of real-world deepfake distributions. In light of this, we attempt to learn an ideal feature space that can aggregate real speech and separate fake speech to achieve better generalizability in the detection of unseen target domains. Specifically, we first propose a feature generator based on Lightweight Convolutional Neural Networks (LCNN), which is employed for generating a feature space and categorizing the feature into real and fake. Meanwhile, single-side domain adversarial learning is leveraged to make only the real speech from different domains indistinguishable, which enables the distribution of real speech to be aggregated in the feature space. Furthermore, a triplet loss is adopted to separate the distribution of fake speech while aggregating the distribution of real speech. Finally, in order to test the generalizability of the model, we train it with three different English datasets and evaluate in harsh conditions: cross-language and noisy datasets. The extensive experiments show that ASDG outperforms the baseline models in cross-domain tasks and decreases Equal Error Rate (EER) by up to 39.24% when compared to that of RawNet2. It is proved that the proposed Aggregation and Separation Domain Generalization method can be an effective strategy to improve the model generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
沉静雁兰应助南客行采纳,获得10
1秒前
健壮不斜完成签到 ,获得积分10
1秒前
2秒前
旎旎关注了科研通微信公众号
4秒前
San万发布了新的文献求助10
5秒前
合适洋葱发布了新的文献求助10
5秒前
打打应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
ED应助科研通管家采纳,获得10
7秒前
7秒前
Tushar完成签到,获得积分10
8秒前
传奇3应助搞怪绿柳采纳,获得10
12秒前
15秒前
今后应助认真若云采纳,获得10
16秒前
111关注了科研通微信公众号
18秒前
Cookies完成签到,获得积分10
21秒前
21秒前
骐骥完成签到,获得积分10
21秒前
醉熏的鑫完成签到,获得积分10
24秒前
Lu_ckilly完成签到 ,获得积分10
24秒前
24秒前
汉堡包应助San万采纳,获得10
25秒前
王m完成签到 ,获得积分10
25秒前
27秒前
27秒前
橱窗发布了新的文献求助10
27秒前
29秒前
醉熏的鑫发布了新的文献求助10
31秒前
顺心的皓轩完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629