Domain Generalization via Aggregation and Separation for Audio Deepfake Detection

计算机科学 概化理论 过度拟合 特征(语言学) 一般化 特征向量 人工智能 领域(数学分析) 外推法 卷积神经网络 模式识别(心理学) 语音识别 骨料(复合) 频域 机器学习 人工神经网络 数学 数学分析 语言学 统计 哲学 计算机视觉 材料科学 复合材料
作者
Yuankun Xie,Haonan Cheng,Yutian Wang,Long Ye
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 344-358 被引量:10
标识
DOI:10.1109/tifs.2023.3324724
摘要

In this paper, we propose an Aggregation and Separation Domain Generalization (ASDG) method for Audio DeepFake Detection (ADD). Fake speech generated from different methods exhibits varied amplitude and frequency distributions rather than genuine speech. In addition, the spoofing attacks in training sets may not keep pace with the evolving diversity of real-world deepfake distributions. In light of this, we attempt to learn an ideal feature space that can aggregate real speech and separate fake speech to achieve better generalizability in the detection of unseen target domains. Specifically, we first propose a feature generator based on Lightweight Convolutional Neural Networks (LCNN), which is employed for generating a feature space and categorizing the feature into real and fake. Meanwhile, single-side domain adversarial learning is leveraged to make only the real speech from different domains indistinguishable, which enables the distribution of real speech to be aggregated in the feature space. Furthermore, a triplet loss is adopted to separate the distribution of fake speech while aggregating the distribution of real speech. Finally, in order to test the generalizability of the model, we train it with three different English datasets and evaluate in harsh conditions: cross-language and noisy datasets. The extensive experiments show that ASDG outperforms the baseline models in cross-domain tasks and decreases Equal Error Rate (EER) by up to 39.24% when compared to that of RawNet2. It is proved that the proposed Aggregation and Separation Domain Generalization method can be an effective strategy to improve the model generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿斯顿完成签到,获得积分10
刚刚
刚刚
罗罗luoluo发布了新的文献求助10
刚刚
Roger发布了新的文献求助10
1秒前
ptalala发布了新的文献求助20
1秒前
1秒前
1秒前
地瓜发布了新的文献求助10
2秒前
我是老大应助柏不斜采纳,获得10
3秒前
求助人员应助coollz采纳,获得10
4秒前
YukiXu发布了新的文献求助10
4秒前
6秒前
思源应助曾经大地采纳,获得10
6秒前
醍醐不醒完成签到 ,获得积分10
6秒前
8秒前
10秒前
10秒前
科研通AI6应助panyubo采纳,获得10
10秒前
悠悠发布了新的文献求助20
11秒前
12秒前
LOTUS发布了新的文献求助10
14秒前
扎根完成签到,获得积分10
14秒前
柏不斜发布了新的文献求助10
15秒前
coollz完成签到,获得积分20
15秒前
15秒前
16秒前
16秒前
扎根发布了新的文献求助150
17秒前
乐in林发布了新的文献求助10
17秒前
玩命的小虾米完成签到,获得积分10
18秒前
junlin完成签到,获得积分10
19秒前
所所应助surain采纳,获得10
20秒前
AMM发布了新的文献求助10
20秒前
Tian发布了新的文献求助100
22秒前
22秒前
FashionBoy应助聪明海云采纳,获得10
24秒前
666发布了新的文献求助10
27秒前
TCMning发布了新的文献求助10
28秒前
28秒前
四玖玖完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588751
求助须知:如何正确求助?哪些是违规求助? 4671674
关于积分的说明 14788516
捐赠科研通 4626078
什么是DOI,文献DOI怎么找? 2531920
邀请新用户注册赠送积分活动 1500505
关于科研通互助平台的介绍 1468329