自噬
生物
死孢子体1
分子生物学
细胞
胎牛血清
肽
生物物理学
化学
生物化学
细胞凋亡
作者
Wenbin Zhang,Pengfei Wei,Liu Liu,Tao Ding,Yinyin Yang,Peipei Jin,Li Zhang,Zhibin Zhao,Meimei Wang,Bochuan Hu,Xin Jin,Zeng Xu,Han Zhang,Yang Song,Liansheng Wang,Suqin Zhong,Jing Chen,Zhenyu Yang,Ziying Chen,Yu Wu
出处
期刊:Autophagy
[Taylor & Francis]
日期:2023-08-02
卷期号:19 (12): 3062-3078
被引量:7
标识
DOI:10.1080/15548627.2023.2235197
摘要
Elevated macroautophagy/autophagy, typically characterized by increased autophagosome accumulation, occurs in a wide variety of physiological and pathophysiological processes, but the current methodology for studying autophagy aberration in native non-transfected cells is rather limited. Here we show that LKT, an engineered molecular probe composed of a cell-penetrating peptide, an LC3-interacting motif and the aggregation-inducedemission (AIE) luminogen tetraphenylethylene, achieved robust identification and isolation of viable autophagy-varying cell subpopulations without the need of foreign reporter gene expression. Non-fluorescent in water, LKT fluorescence is activated upon interaction with liposomes in an AIE-dependent fashion, and the presence of LC3 on the liposome membrane dramatically boosted LKT fluorescence enhancement. In LKT-treated GFP-LC3 HeLa cells, induction of autophagy with rapamycin or trehalose, and blockade of autophagy with chloroquine, both produced bright GFP-LC3-colocalizing LKT puncta, leading to an increase in LKT fluorescence that facilitated efficient separation of cells based on the level of autophagosome accumulation. Using fluorescence-activated cell sorting, we were able to isolate cell subpopulations varying in the level of basal autophagy from a variety of cultured cell lines and primary cells. In a proof-of-concept study, we isolated autophagy-high and autophagy-low subpopulations from differentiated THP-1 cells and revealed that the autophagy-high THP-1 cells, compared to their autophagy-low counterparts, exhibited a higher level of NLRP3 protein expression and a stronger NLRP3 inflammasome activation following nigericin challenge. Our work demonstrated the unique power of the AIE technology and LKT, filling a void, should prove valuable for autophagy research.
科研通智能强力驱动
Strongly Powered by AbleSci AI