UAS and UGV-Based Disease Management System for Diagnosing Corn Diseases Above and Below the Canopy Using Deep Learning

计算机科学 人工智能 天蓬 鉴定(生物学) 深度学习 目标检测 最小边界框 机器学习 自动化 计算机视觉 遥感 模式识别(心理学) 生物 工程类 地理 生态学 机械工程 图像(数学)
作者
Aanis Ahmad,Varun Aggarwal,Dharmendra Saraswat,Gurmukh S. Johal
标识
DOI:10.13031/aim.202301515
摘要

Abstract. Early disease management following the onset of disease symptoms is crucial for controlling their spread. Heterogenous collaboration between unmanned aerial systems (UAS) and unmanned ground vehicles (UGV) for field scouting and disease diagnosis is being viewed as a potential approach for developing automated disease management solutions. However, automation of crop-specific disease identification requires the use of above and below-canopy sensors and properly trained deep learning (DL) models. This research proposes to develop a novel disease management system for diagnosing corn diseases from above and below the canopy by collaboratively using edge devices mounted on UAS and UGV, respectively. Three separate datasets were first acquired using UAS above the canopy, UGV below the canopy, and handheld imaging platforms within diseased corn fields. DL-based image classification models were first trained for identifying common corn diseases under field conditions resulting in testing accuracies of up to 95.04% using the DenseNet169 architecture. After creating bounding box annotations for disease images, You Only Look Once (YOLO)v7 DL-based object detection models were trained to identify diseases from each platform separately. After training multiple YOLOv7 models, the highest mAP@IoU=0.5 of 37.6%, 46.4%, and 72.2% were achieved for locating and identifying diseases above the canopy using UAS, below the canopy using UGV, and handheld sensors, respectively. A client/server architecture was developed to establish communication between the UAS, UGV, and Google Spreadsheets via Wi-Fi communication protocol. The coordinates of diseased regions and distinct disease types were recorded on Google Spreadsheets using the client/server architecture. A web application was developed to utilize the data from the Google Spreadsheet to help users diagnose diseases in real-time and provide them with recommendations for implementing appropriate disease management practices. Overall, this study reports findings of a collaborative UAS and UGV-based corn disease management system will help control disease spread and overcome yield losses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ren发布了新的文献求助10
刚刚
2秒前
李健的小迷弟应助aaa采纳,获得10
4秒前
科研小民工应助pifang2009采纳,获得200
5秒前
5秒前
温暖的涵易应助ljh采纳,获得50
6秒前
李爱国应助1234采纳,获得10
7秒前
科研通AI5应助sqw采纳,获得10
8秒前
9秒前
鲸鱼完成签到,获得积分10
9秒前
9秒前
changjing5638完成签到,获得积分10
10秒前
Fan完成签到,获得积分10
11秒前
孔喳喳发布了新的文献求助10
11秒前
大个应助橘子味汽水采纳,获得10
12秒前
12秒前
摸鱼划水完成签到 ,获得积分10
12秒前
lalalala发布了新的文献求助10
12秒前
李李李发布了新的文献求助10
13秒前
鲸鱼发布了新的文献求助10
15秒前
jy发布了新的文献求助10
16秒前
科研通AI5应助赵亮采纳,获得10
16秒前
19秒前
20秒前
21秒前
李李李完成签到,获得积分10
22秒前
wanci应助123采纳,获得10
23秒前
1234发布了新的文献求助10
25秒前
orixero应助靖123456采纳,获得10
27秒前
烟花应助舒适路人采纳,获得10
28秒前
不戴眼镜的柯南关注了科研通微信公众号
28秒前
琦诺发布了新的文献求助20
29秒前
31秒前
ZSFL完成签到,获得积分10
31秒前
赘婿应助孔喳喳采纳,获得10
32秒前
32秒前
士多啤梨发布了新的文献求助20
34秒前
哎哟我去完成签到 ,获得积分10
36秒前
222发布了新的文献求助10
37秒前
科研通AI5应助cloud采纳,获得50
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524978
求助须知:如何正确求助?哪些是违规求助? 3105777
关于积分的说明 9276213
捐赠科研通 2803069
什么是DOI,文献DOI怎么找? 1538346
邀请新用户注册赠送积分活动 716205
科研通“疑难数据库(出版商)”最低求助积分说明 709290