A method of concrete damage detection and localization based on weakly supervised learning

计算机科学 像素 人工智能 卷积神经网络 跳跃式监视 相似性(几何) 最小边界框 模式识别(心理学) 自动化 计算机视觉 数据挖掘 图像(数学) 工程类 机械工程
作者
Yongqing Jiang,Dongfang Pang,Chengdong Li,Jianze Wang
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:39 (7): 1042-1060 被引量:1
标识
DOI:10.1111/mice.13124
摘要

Abstract Automatic inspection of concrete surface defects based on visual elements is crucial for the timely detection of security risks in infrastructure. Moreover, accurate determination of the geographical location of the detected defects is critical for subsequent maintenance and reinforcement tasks. This study employed convolutional neural network (CNN) training methods for detection and localization. This approach employs bounding boxes to confine damaged pixels and utilizes projection loss to foster similarity learning between pixels. In addition, geotags are automatically indexed through the vectorization of invariant features in a scene, which maintains high model accuracy and reduces training costs. The proposed method can detect and classify typical concrete defects in complex scenarios and accurately locate them without the use of external sensors. In addition, the proposed model can achieve pixel‐level defect detection and geographic location determination through the cost of bounding box annotation and automatic indexing. The proposed model was evaluated using 10,691 images of four typical concrete defects in various complex environments. The results demonstrate that the proposed method achieves a pixel‐level detection accuracy of 48.75 and a location accuracy of 83.69, showing a better performance than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱思考的我完成签到,获得积分10
1秒前
zzznznnn发布了新的文献求助10
1秒前
科研通AI5应助junzilan采纳,获得10
2秒前
2秒前
2秒前
田様应助SCI采纳,获得10
3秒前
无花果应助帅气惜霜采纳,获得10
4秒前
Qiuju发布了新的文献求助10
4秒前
Z小姐发布了新的文献求助10
5秒前
义气发卡完成签到 ,获得积分10
6秒前
6秒前
6秒前
三十八年夏至完成签到 ,获得积分10
7秒前
佳佳减减发布了新的文献求助10
7秒前
拾柒完成签到 ,获得积分10
7秒前
zqfxc发布了新的文献求助10
8秒前
8秒前
SYLH应助FartKing采纳,获得10
8秒前
该睡觉啦发布了新的文献求助20
9秒前
陈梦雨完成签到 ,获得积分10
10秒前
gg完成签到,获得积分10
10秒前
瞬间完成签到 ,获得积分10
10秒前
Hello paper完成签到,获得积分10
11秒前
11秒前
demonox完成签到,获得积分10
11秒前
乐乐应助奔奔采纳,获得10
12秒前
14秒前
14秒前
科研通AI5应助SCI采纳,获得10
14秒前
科研通AI5应助hobowei采纳,获得10
17秒前
可爱奇异果完成签到 ,获得积分10
17秒前
wang发布了新的文献求助10
18秒前
太空人完成签到,获得积分10
18秒前
123发布了新的文献求助10
19秒前
20秒前
该睡觉啦完成签到,获得积分20
20秒前
20秒前
莫x莫完成签到 ,获得积分10
22秒前
loewy完成签到,获得积分10
22秒前
黄婷发布了新的文献求助10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794