Efficient detection and picking sequence planning of tea buds in a high-density canopy

指针(用户界面) 旅行商问题 人工神经网络 计算机科学 序列(生物学) 强化学习 运行时间 实时计算 人工智能 算法 遗传学 生物
作者
Guimin Lin,Juntao Xiong,Runmao Zhao,Xiaomin Li,Hongnan Hu,Liehuang Zhu,Rihong Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108213-108213
标识
DOI:10.1016/j.compag.2023.108213
摘要

Real-time robotic tea picking ensures the economic benefits of the well-known high-quality tea industry. Efficient tea bud detection and picking sequence planning are two challenges that hinder the development of these robots. To this end, two lightweight neural networks are investigated to tackle these two problems. A state-of-the-art detection network YOLOX-S is first deployed to quickly identify tea buds. Second, the picking sequence planning of the detected tea buds is formulated as a traveling salesman problem (TSP). Then a modified pointer network is proposed to solve the TSP, improving the pointer network by replacing its recurrent neural network with a simple self-attention layer and optimizing its parameters using a reinforcement learning algorithm. The experimental results show that YOLOX-S achieves an average precision of 0.642 and an average running time of 17.43 ms; for the problem of up to 100 tea buds in the two-dimensional interval [0, 1] × [0, 1], the modified pointer network solves the TSP with an average path length of 8.30 and an average running time of 1.69 ms. These results demonstrate that YOLOX-S and the modified pointer network can efficiently solve the tea bud detection and picking sequence planning problem without losing too much accuracy, which provides technical support for real-time tea-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助nj采纳,获得10
1秒前
白桃发布了新的文献求助10
2秒前
小笼包完成签到 ,获得积分10
4秒前
5秒前
我爱达不溜完成签到,获得积分20
6秒前
7秒前
9秒前
10秒前
糊涂的勒发布了新的文献求助10
11秒前
song发布了新的文献求助10
11秒前
四公子未敢言完成签到,获得积分0
12秒前
elgar612发布了新的文献求助10
16秒前
20秒前
Eves关注了科研通微信公众号
23秒前
kittykitten完成签到 ,获得积分10
24秒前
26秒前
糊涂的勒完成签到,获得积分10
27秒前
28秒前
子衿发布了新的文献求助10
28秒前
心随以动发布了新的文献求助10
30秒前
30秒前
31秒前
31秒前
超级的鹅完成签到,获得积分10
32秒前
gzy780819发布了新的文献求助10
32秒前
32秒前
XIXI完成签到,获得积分20
33秒前
33秒前
毛豆爸爸应助violetyjm采纳,获得20
35秒前
35秒前
35秒前
35秒前
He发布了新的文献求助10
36秒前
36秒前
子铭完成签到,获得积分10
36秒前
Owen应助马某某某某某采纳,获得10
37秒前
song发布了新的文献求助10
38秒前
布丁完成签到 ,获得积分10
40秒前
40秒前
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139127
求助须知:如何正确求助?哪些是违规求助? 2790013
关于积分的说明 7793363
捐赠科研通 2446416
什么是DOI,文献DOI怎么找? 1301093
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102