Evaluation of Lipid Extraction Protocols for Untargeted Analysis of Mouse Tissue Lipidome

脂质体 萃取(化学) 脂类学 计算生物学 生物 化学 生物信息学 色谱法
作者
Ashraf M. Omar,Qibin Zhang
出处
期刊:Metabolites [MDPI AG]
卷期号:13 (9): 1002-1002 被引量:3
标识
DOI:10.3390/metabo13091002
摘要

Lipidomics refers to the full characterization of lipids present within a cell, tissue, organism, or biological system. One of the bottlenecks affecting reliable lipidomic analysis is the extraction of lipids from biological samples. An ideal extraction method should have a maximum lipid recovery and the ability to extract a broad range of lipid classes with acceptable reproducibility. The most common lipid extraction relies on either protein precipitation (monophasic methods) or liquid-liquid partitioning (bi- or triphasic methods). In this study, three monophasic extraction systems, isopropanol (IPA), MeOH/MTBE/CHCl3 (MMC), and EtOAc/EtOH (EE), alongside three biphasic extraction methods, Folch, butanol/MeOH/heptane/EtOAc (BUME), and MeOH/MTBE (MTBE), were evaluated for their performance in characterization of the mouse lipidome of six different tissue types, including pancreas, spleen, liver, brain, small intestine, and plasma. Sixteen lipid classes were investigated in this study using reversed-phase liquid chromatography/mass spectrometry. Results showed that all extraction methods had comparable recoveries for all tested lipid classes except lysophosphatidylcholines, lysophosphatidylethanolamines, acyl carnitines, sphingomyelines, and sphingosines. The recoveries of these classes were significantly lower with the MTBE method, which could be compensated by the addition of stable isotope-labeled internal standards prior to lipid extraction. Moreover, IPA and EE methods showed poor reproducibility in extracting lipids from most tested tissues. In general, Folch is the optimum method in terms of efficacy and reproducibility for extracting mouse pancreas, spleen, brain, and plasma. However, MMC and BUME methods are more favored when extracting mouse liver or intestine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
格子布发布了新的文献求助10
刚刚
1秒前
Ray完成签到 ,获得积分20
2秒前
傻傻的冥王星完成签到 ,获得积分10
2秒前
放倒巨大豆蔓完成签到 ,获得积分10
2秒前
鲸落完成签到,获得积分10
3秒前
长情的不言完成签到,获得积分10
3秒前
4秒前
5秒前
研友_VZG7GZ应助leihai采纳,获得10
6秒前
科研通AI2S应助包容丹云采纳,获得20
8秒前
9秒前
10秒前
Singularity应助聪聪哥哥采纳,获得10
11秒前
11秒前
JamesPei应助hihi采纳,获得10
11秒前
11秒前
12秒前
12秒前
666666关注了科研通微信公众号
14秒前
小树苗发布了新的文献求助10
14秒前
背后的大米完成签到,获得积分10
14秒前
15秒前
15秒前
调研昵称发布了新的文献求助10
15秒前
善良夜梅应助HI采纳,获得10
16秒前
16秒前
Murray应助刘1采纳,获得10
16秒前
无花果应助风中子轩采纳,获得15
17秒前
cctv18给王志豪的求助进行了留言
17秒前
飞鸟完成签到,获得积分10
17秒前
17秒前
媛媛不媛完成签到 ,获得积分20
17秒前
水煮肉片发布了新的文献求助10
18秒前
希望天下0贩的0应助YJ888采纳,获得10
18秒前
科研通AI2S应助617499818采纳,获得10
18秒前
小蘑菇应助感动迎蕾采纳,获得10
18秒前
Hua完成签到,获得积分10
19秒前
3W完成签到,获得积分10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247424
求助须知:如何正确求助?哪些是违规求助? 2890727
关于积分的说明 8264436
捐赠科研通 2559108
什么是DOI,文献DOI怎么找? 1387751
科研通“疑难数据库(出版商)”最低求助积分说明 650648
邀请新用户注册赠送积分活动 627355