Federated Semi-Supervised Medical Image Segmentation via Prototype-Based Pseudo-Labeling and Contrastive Learning

判别式 计算机科学 分割 一致性(知识库) 人工智能 标记数据 图像分割 学习迁移 交叉熵 半监督学习 熵(时间箭头) 模式识别(心理学) 相似性(几何) 机器学习 光学(聚焦) 图像(数学) 物理 光学 量子力学
作者
Huisi Wu,Baiming Zhang,Cheng Chen,Jing Qin
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (2): 649-661 被引量:12
标识
DOI:10.1109/tmi.2023.3314430
摘要

Existing federated learning works mainly focus on the fully supervised training setting. In realistic scenarios, however, most clinical sites can only provide data without annotations due to the lack of resources or expertise. In this work, we are concerned with the practical yet challenging federated semi-supervised segmentation (FSSS), where labeled data are only with several clients and other clients can just provide unlabeled data. We take an early attempt to tackle this problem and propose a novel FSSS method with prototype-based pseudo-labeling and contrastive learning. First, we transmit a labeled-aggregated model, which is obtained based on prototype similarity, to each unlabeled client, to work together with the global model for debiased pseudo labels generation via a consistency- and entropy-aware selection strategy. Second, we transfer image-level prototypes from labeled datasets to unlabeled clients and conduct prototypical contrastive learning on unlabeled models to enhance their discriminative power. Finally, we perform the dynamic model aggregation with a designed consistency-aware aggregation strategy to dynamically adjust the aggregation weights of each local model. We evaluate our method on COVID-19 X-ray infected region segmentation, COVID-19 CT infected region segmentation and colorectal polyp segmentation, and experimental results consistently demonstrate the effectiveness of our proposed method. Codes areavailable at https://github.com/zhangbaiming/FedSemiSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1335804518完成签到 ,获得积分10
1秒前
香蕉觅云应助小杨爱学习采纳,获得10
1秒前
doc发布了新的文献求助10
1秒前
2秒前
猪猪hero发布了新的文献求助10
2秒前
坦率的友菱完成签到,获得积分20
3秒前
miaomiao发布了新的文献求助10
3秒前
酷波er应助机灵飞兰采纳,获得10
4秒前
nicewink发布了新的文献求助10
5秒前
5秒前
orixero应助爱吃西瓜采纳,获得10
5秒前
诚心的以亦完成签到,获得积分20
5秒前
顺心绮兰完成签到,获得积分10
6秒前
7秒前
7秒前
doc完成签到,获得积分20
9秒前
10秒前
LegendThree关注了科研通微信公众号
10秒前
wfrg完成签到,获得积分10
10秒前
10秒前
机灵飞兰完成签到,获得积分10
10秒前
Orange应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
科研通AI2S应助doc采纳,获得10
12秒前
13秒前
不爱吃西葫芦完成签到 ,获得积分10
13秒前
13秒前
Jiabao发布了新的文献求助10
13秒前
13秒前
rainny发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540542
求助须知:如何正确求助?哪些是违规求助? 3117849
关于积分的说明 9332719
捐赠科研通 2815618
什么是DOI,文献DOI怎么找? 1547675
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445