数学
超收敛
艾伦-卡恩方程
有限元法
多项式次数
不变(物理)
应用数学
多项式的
数值分析
趋同(经济学)
学位(音乐)
非线性系统
数学分析
数学物理
物理
经济
热力学
量子力学
经济增长
声学
作者
Guodong Zhang,Xiaofeng Yang
标识
DOI:10.1142/s0218202523500537
摘要
In this paper, for the Allen–Cahn equation, we obtain the error estimate of the temporal semi-discrete scheme, and the fully-discrete finite element numerical scheme, both of which are based on the invariant energy quadratization (IEQ) time-marching strategy. We establish the relationship between the [Formula: see text]-error bound and the [Formula: see text]-stabilities of the numerical solution. Then, by converting the numerical schemes to a form compatible with the original format of the Allen–Cahn equation, using mathematical induction, the superconvergence property of nonlinear terms, and the spectrum argument, the optimal error estimates that only depends on the low-order polynomial degree of [Formula: see text] instead of [Formula: see text] for both of the semi and fully-discrete schemes are derived. Numerical experiment also validates our theoretical convergence analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI