Application of knowledge graph in software engineering field: A systematic literature review

计算机科学 软件工程 软件挖掘 知识工程 领域知识 知识整合 知识建模 软件开发 知识管理 数据科学 软件 软件建设 程序设计语言
作者
Lu Wang,Chenhan Sun,Chongyang Zhang,Weike Nie,Kaiyuan Huang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:164: 107327-107327 被引量:7
标识
DOI:10.1016/j.infsof.2023.107327
摘要

Knowledge graphs describe knowledge resources and their carriers through visualization. Moreover, they mine, analyze, construct, draw, and display knowledge and their interrelationships to reveal the dynamic development law of the knowledge field. Furthermore, knowledge graphs provide practical and valuable references for subject research. With the development of software engineering, powerful semantic processing and organizational interconnection capabilities of knowledge graphs are gradually required. Current research suggests using knowledge graphs for code or API recommendation, vulnerability mining, and positioning to improve the efficiency and accuracy of development and design. However, software engineering lacks a systematic analysis of the knowledge graphs application. This paper explores the construction techniques and application status of knowledge graphs in the field of software engineering, broadens the application prospects of knowledge graphs in this field, and facilitates the subsequent research of researchers. We collected over 100 documents from 2017 to date and selected 55 directly related documents for systematic analysis. Then, we analyzed the organized knowledge mainly stored in software engineering knowledge graphs, including software architecture, code details, and security reports. We studied the emerging research methods in ontology modeling, named entity recognition, and knowledge fusion in graph construction and found that current knowledge graphs are mainly used in intelligent software development, software vulnerability mining, security testing, and API recommendation. Our research on the innovation of knowledge graph in software engineering and the future construction of integrating open-source community software and developer recommendations with knowledge-driven microservice O&M aspects can inspire more scholars and knowledge workers to use knowledge graph technology, which is important to solve software engineering problems and promote the development of both fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
szl完成签到,获得积分10
刚刚
1秒前
orixero应助跳跃的静曼采纳,获得10
1秒前
诺奖离我十万八千里完成签到,获得积分10
1秒前
高高发布了新的文献求助10
1秒前
5秒前
深情安青应助机智的青槐采纳,获得10
5秒前
茶茶发布了新的文献求助10
5秒前
szl发布了新的文献求助10
5秒前
Lucas应助京阿尼采纳,获得10
6秒前
甜甜晓露完成签到,获得积分10
7秒前
科研通AI5应助qifa采纳,获得10
7秒前
shrike完成签到 ,获得积分10
7秒前
有魅力白开水完成签到,获得积分20
7秒前
小蒲完成签到 ,获得积分10
8秒前
万能图书馆应助大力鱼采纳,获得10
8秒前
9秒前
Rrr发布了新的文献求助10
10秒前
跳跃的静曼完成签到,获得积分10
10秒前
丰富的不惜完成签到,获得积分10
11秒前
12秒前
wfc完成签到,获得积分10
12秒前
浅梨涡完成签到 ,获得积分10
14秒前
JamesPei应助椰子熟了耶采纳,获得20
15秒前
hanyang965发布了新的文献求助10
15秒前
orixero应助喵呜采纳,获得10
15秒前
15秒前
15秒前
16秒前
en发布了新的文献求助10
16秒前
17秒前
白宝宝北北白应助氕氘氚采纳,获得10
17秒前
18秒前
进取拼搏完成签到,获得积分10
18秒前
hehsk完成签到,获得积分10
18秒前
无限鞅完成签到,获得积分20
18秒前
19秒前
DY完成签到 ,获得积分10
20秒前
郑仕完成签到,获得积分10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808