Highly sensitive smart hydrogels with pH-tunable toughness via signaling cascade amplification

自愈水凝胶 级联 单体 韧性 丙烯酸酯 丙烯酸 软化 材料科学 聚合物 化学工程 化学 纳米技术 高分子化学 复合材料 色谱法 工程类
作者
Wentao Wang,Yi Liu,Yonghang Liu,Xiaoxue Yang,Xiaolin Wang
出处
期刊:Giant [Elsevier BV]
卷期号:16: 100197-100197 被引量:3
标识
DOI:10.1016/j.giant.2023.100197
摘要

The signaling cascade amplification is a common biological phenomenon which can effectively amplify the signal intensity and trigger huge physiological feedback. Inspired by this mechanism, herein we design a simple strategy to develop highly sensitive smart hydrogels of which the mechanical performance can be finely tuned with pH. Simply composed with hydrophobic rigid monomer phenyl acrylate with pH-responsive monomer acrylic acid, the hydrogels demonstrate high mechanical performance in an acidic environment. Upon pH rising, the gels reveal remarkable softening performance by dropping 3 orders of decrease in rigidity just in a narrow pH range. Especially, the gels reveal high sensitivity to pH near the pKa of acrylic acid, with Young's modulus dropping 50 times by merely elevating pH of 0.06. After systematical mechanism insight, it proves that the pH signal affects the toughness with a step-by-step mechanism by gradually amplifying the trigger, similar to the signaling cascade amplification in nature. The pH enhancement first brings about a growth in ionization degree, followed by the upturning of hydration level. Then, the absorbed water serves as plasticizer by mobilizing the frozen network and lowering the softening temperature. Eventually, the gels are shifted to a rubbery state and their toughness significantly decreases. Moreover, the criterion to develop such smart hydrogels is proposed, which demonstrates universality to different systems. This novel bio-mimetic mechanism, we hope, may substantially inspire the development and application of smart hydrogels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上善若水完成签到 ,获得积分10
1秒前
nini完成签到,获得积分10
1秒前
啦啦啦发布了新的文献求助10
1秒前
Starry发布了新的文献求助10
1秒前
华仔应助知足的憨人丫丫采纳,获得10
1秒前
南木_完成签到,获得积分10
2秒前
Akim应助健壮的研究生采纳,获得10
2秒前
赘婿应助感性的安露采纳,获得10
2秒前
2秒前
充电宝应助小天使采纳,获得10
3秒前
3秒前
5秒前
小恶于完成签到 ,获得积分10
5秒前
亲爱的融完成签到,获得积分10
5秒前
义气的钥匙完成签到,获得积分10
5秒前
福娃哇完成签到 ,获得积分10
5秒前
冯冯发布了新的文献求助10
6秒前
6秒前
科研通AI5应助称心的芙采纳,获得10
7秒前
7秒前
babytoy发布了新的文献求助10
7秒前
杰克发布了新的文献求助10
7秒前
7秒前
meng123发布了新的文献求助30
7秒前
8秒前
天天快乐应助abbytcc采纳,获得10
8秒前
cute伊完成签到,获得积分10
9秒前
yxy完成签到,获得积分10
9秒前
9秒前
一介书生发布了新的文献求助10
10秒前
科研通AI5应助yysh1950采纳,获得10
10秒前
Tiger-Cheng完成签到,获得积分10
10秒前
典雅问寒应助黄丽采纳,获得10
10秒前
10秒前
杨嘉琪完成签到 ,获得积分20
11秒前
行毅文完成签到,获得积分10
11秒前
qiuxuan100发布了新的文献求助10
11秒前
大模型应助su采纳,获得10
11秒前
wqx完成签到 ,获得积分10
12秒前
冯梦梦完成签到 ,获得积分10
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730039
求助须知:如何正确求助?哪些是违规求助? 3274929
关于积分的说明 9989600
捐赠科研通 2990336
什么是DOI,文献DOI怎么找? 1641074
邀请新用户注册赠送积分活动 779534
科研通“疑难数据库(出版商)”最低求助积分说明 748266