Towards efficient airline disruption recovery with reinforcement learning

强化学习 解算器 马尔可夫决策过程 计算机科学 杠杆(统计) 数学优化 船员 趋同(经济学) 转换 运筹学 马尔可夫过程 人工智能 工程类 数学 电信 统计 航空学 传输(电信) 经济 程序设计语言 经济增长
作者
Yida Ding,Sebastian Wandelt,Guohua Wu,Yifan Xu,Xiaoqian Sun
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:179: 103295-103295 被引量:24
标识
DOI:10.1016/j.tre.2023.103295
摘要

Disruptions to airline schedules precipitate flight delays/cancellations and significant losses for airline operations. The goal of the integrated airline recovery problem is to develop an operational tool that provides the airline with an instant and cost-effective solution concerning aircraft, crew members and passengers in face of the emerging disruptions. In this paper, we formulate a decision recommendation framework which incorporates various recovery decisions including aircraft and crew rerouting, passenger reaccommodation, departure holding, flight cancellation and cruise speed control. Given the computational hardness of solving the mixed-integer nonlinear programming (MINP) model by the commercial solver (e.g., CPLEX), we establish a novel solution framework by incorporating Deep Reinforcement Learning (DRL) to the Variable Neighborhood Search (VNS) algorithm with well-designed neighborhood structures and state evaluator. We utilize Proximal Policy Optimization (PPO) to train the stochastic policy exploited to select neighborhood operations given the current state throughout the Markov Decision Process (MDP). Experimental results show that the objective value generated by our approach is within a 1.5% gap with respect to the optimal/close-to-optimal objective of the CPLEX solver for the small-scale instances, with significant improvement regarding runtime. The pre-trained DRL agent can leverage features/weights obtained from the training process to accelerate the arrival of objective convergence and further improve solution quality, which exhibits the potential of achieving Transfer Learning (TL). Given the inherent intractability of the problem on practical size instances, we propose a method to control the size of the DRL agent’s action space to allow for efficient training process. We believe our study contributes to the efforts of airlines in seeking efficient and cost-effective recovery solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助Wxj246801采纳,获得10
刚刚
田様应助kk采纳,获得10
刚刚
老实的寒安完成签到,获得积分10
1秒前
Mr.Jian完成签到,获得积分10
2秒前
菠萝蜜完成签到,获得积分10
2秒前
灵巧的孤容完成签到,获得积分10
2秒前
直率的宛海完成签到,获得积分10
2秒前
矮小的万声完成签到,获得积分10
2秒前
思源应助xinxin采纳,获得10
3秒前
x跳完成签到,获得积分10
3秒前
Daniel2010发布了新的文献求助10
4秒前
4秒前
YellowStar发布了新的文献求助10
4秒前
lh23完成签到,获得积分10
5秒前
5秒前
liweiyue发布了新的文献求助10
5秒前
Seven7完成签到,获得积分10
6秒前
7秒前
7秒前
kaisim完成签到,获得积分20
8秒前
8秒前
慕青应助hugdoggy采纳,获得10
9秒前
9秒前
遮宁完成签到,获得积分10
9秒前
xiaozhang完成签到,获得积分10
10秒前
justsoso完成签到,获得积分10
10秒前
YANHAN发布了新的文献求助10
10秒前
11秒前
kaisim发布了新的文献求助10
11秒前
XM完成签到 ,获得积分10
12秒前
赘婿应助Sam采纳,获得10
12秒前
nano完成签到 ,获得积分10
12秒前
文献蚂蚁发布了新的文献求助10
13秒前
LiDaYang完成签到,获得积分10
13秒前
阿辉发布了新的文献求助10
13秒前
xiaozhang发布了新的文献求助10
14秒前
Lion完成签到,获得积分10
14秒前
zhangyu应助jiang采纳,获得10
14秒前
苏苏弋完成签到,获得积分10
15秒前
存慎完成签到 ,获得积分10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009366
求助须知:如何正确求助?哪些是违规求助? 3549232
关于积分的说明 11301348
捐赠科研通 3283689
什么是DOI,文献DOI怎么找? 1810387
邀请新用户注册赠送积分活动 886217
科研通“疑难数据库(出版商)”最低求助积分说明 811301