Prediction of urban airflow fields around isolated high-rise buildings using data-driven non-linear correction models

计算流体力学 湍流 气流 唤醒 雷诺应力 湍流模型 稳健性(进化) 流入 风洞 线性模型 机械 雷诺应力方程模型 计算机科学 应用数学 数学 湍流动能 工程类 物理 K-omega湍流模型 机械工程 统计 生物化学 化学 基因
作者
Yuanbo Wang,Jiqin Li,Wei Liu,Shi Zhang,Jiankai Dong,Jing Liu
出处
期刊:Building and Environment [Elsevier]
卷期号:246: 110894-110894 被引量:6
标识
DOI:10.1016/j.buildenv.2023.110894
摘要

When it comes to predicting urban airflow, steady Reynolds-averaged Navier-Stokes (SRANS) models that rely on Reynolds stress often face a challenge called the closure problem. This problem involves unresolved structural flaws and uncertainties in the closure coefficients used in the models. Previous attempts to recalibrate coefficients for specific urban flows without breaking the linear constitutive relation have resulted in simulation results constrained by the baseline turbulence model. Therefore, this study aims to enhance the performance of SRANS models by addressing these structural flaws. To achieve this, a novel data-driven framework is proposed. It leverages the deterministic symbolic regression algorithm to discover explicit algebraic expressions for a non-linear Reynolds stress correction model. The robustness of the correction model is ensured by maintaining the linear eddy viscosity model for iterative calculations while keeping the non-linear component frozen. The proposed framework is evaluated using three isolated building cases with varying geometric configurations and inflow boundary conditions. Findings demonstrate that computational fluid dynamics (CFD) predictions incorporating the data-driven non-linear correction model consistently align closer to wind tunnel experimental results compared to both standard and non-linear versions of the k-ε turbulence model. This improvement is reflected in reduced reattachment lengths and more accurate mean velocity distributions in the wake of buildings. However, it should be noted that there is a possibility of overpredicting wind velocity in the windward area. This study introduces valuable insights and additional strategies to enhance the prediction accuracy of SRANS models in urban airflow simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
FG发布了新的文献求助10
1秒前
飞阳发布了新的文献求助10
1秒前
伊尔发布了新的文献求助10
2秒前
2秒前
罗罗完成签到 ,获得积分10
2秒前
小二郎应助fg789456采纳,获得10
2秒前
2秒前
山山完成签到 ,获得积分10
2秒前
2秒前
自信的若风完成签到,获得积分10
3秒前
啦啦啦啦完成签到,获得积分10
3秒前
沐沐完成签到,获得积分10
4秒前
今后应助吃素的熊猫采纳,获得10
5秒前
动力小滋完成签到,获得积分10
5秒前
夏冰发布了新的文献求助10
5秒前
6秒前
6秒前
王越完成签到,获得积分10
6秒前
6秒前
7秒前
amoresk发布了新的文献求助10
7秒前
Potato123123完成签到,获得积分10
7秒前
7秒前
yu完成签到,获得积分10
7秒前
CodeCraft应助Timeflies采纳,获得10
7秒前
蝌蚪发布了新的文献求助10
7秒前
Zoe发布了新的文献求助10
8秒前
8秒前
DSSS发布了新的文献求助10
9秒前
星辰发布了新的文献求助30
9秒前
h7nho发布了新的文献求助30
9秒前
蓝天发布了新的文献求助10
10秒前
jsdyys完成签到,获得积分10
10秒前
小丸子完成签到,获得积分20
10秒前
Hello应助安详绿草采纳,获得10
10秒前
夏明明发布了新的文献求助10
10秒前
lzj发布了新的文献求助10
11秒前
maxiao发布了新的文献求助10
11秒前
王嵩嵩完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647315
求助须知:如何正确求助?哪些是违规求助? 4773295
关于积分的说明 15038828
捐赠科研通 4806039
什么是DOI,文献DOI怎么找? 2570062
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486049