Prediction of urban airflow fields around isolated high-rise buildings using data-driven non-linear correction models

计算流体力学 湍流 气流 唤醒 雷诺应力 湍流模型 稳健性(进化) 流入 风洞 线性模型 机械 雷诺应力方程模型 计算机科学 应用数学 数学 湍流动能 工程类 物理 K-omega湍流模型 机械工程 统计 生物化学 化学 基因
作者
Yuanbo Wang,Jiqin Li,Wei Liu,Shi Zhang,Jiankai Dong,Jing Liu
出处
期刊:Building and Environment [Elsevier]
卷期号:246: 110894-110894 被引量:6
标识
DOI:10.1016/j.buildenv.2023.110894
摘要

When it comes to predicting urban airflow, steady Reynolds-averaged Navier-Stokes (SRANS) models that rely on Reynolds stress often face a challenge called the closure problem. This problem involves unresolved structural flaws and uncertainties in the closure coefficients used in the models. Previous attempts to recalibrate coefficients for specific urban flows without breaking the linear constitutive relation have resulted in simulation results constrained by the baseline turbulence model. Therefore, this study aims to enhance the performance of SRANS models by addressing these structural flaws. To achieve this, a novel data-driven framework is proposed. It leverages the deterministic symbolic regression algorithm to discover explicit algebraic expressions for a non-linear Reynolds stress correction model. The robustness of the correction model is ensured by maintaining the linear eddy viscosity model for iterative calculations while keeping the non-linear component frozen. The proposed framework is evaluated using three isolated building cases with varying geometric configurations and inflow boundary conditions. Findings demonstrate that computational fluid dynamics (CFD) predictions incorporating the data-driven non-linear correction model consistently align closer to wind tunnel experimental results compared to both standard and non-linear versions of the k-ε turbulence model. This improvement is reflected in reduced reattachment lengths and more accurate mean velocity distributions in the wake of buildings. However, it should be noted that there is a possibility of overpredicting wind velocity in the windward area. This study introduces valuable insights and additional strategies to enhance the prediction accuracy of SRANS models in urban airflow simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
永远永远完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
合适的乐儿完成签到,获得积分10
3秒前
sswbzh应助风清扬采纳,获得50
4秒前
4秒前
4秒前
正念完成签到,获得积分10
5秒前
Orange应助心灵美的小伙采纳,获得10
5秒前
5秒前
5秒前
5秒前
寒水沉烟完成签到,获得积分10
5秒前
5秒前
充电宝应助九九采纳,获得10
6秒前
6秒前
怕黑寻双完成签到,获得积分10
6秒前
6秒前
6秒前
orixero应助王硕硕采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
llhh2024发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
10秒前
csy完成签到,获得积分10
10秒前
脱锦涛发布了新的文献求助10
10秒前
曹小曹发布了新的文献求助10
10秒前
11秒前
呆萌发布了新的文献求助10
11秒前
小蘑菇应助遇晴采纳,获得10
12秒前
12秒前
天天快乐应助小狗采纳,获得10
12秒前
12秒前
白瑾发布了新的文献求助10
12秒前
12秒前
alex发布了新的文献求助10
13秒前
vigour发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894