Computation Off-Loading in Resource-Constrained Edge Computing Systems Based on Deep Reinforcement Learning

计算机科学 边缘计算 强化学习 移动边缘计算 分布式计算 服务器 边缘设备 调度(生产过程) 延迟(音频) 计算 计算卸载 效用计算 GSM演进的增强数据速率 计算机网络 云计算 人工智能 操作系统 算法 云安全计算 经济 电信 运营管理
作者
Chuanwen Luo,Jian Zhang,Xiaolu Cheng,Yi Hong,Zhibo Chen,Xiaoshuang Xing
出处
期刊:IEEE Transactions on Computers [Institute of Electrical and Electronics Engineers]
卷期号:73 (1): 109-122 被引量:3
标识
DOI:10.1109/tc.2023.3321938
摘要

Edge computing is a computational paradigm that brings resources closer to the network edge, such as base stations or gateways, in order to provide quick and efficient computing services for mobile devices while relieving pressure on the core network. However, the current computing power of edge servers are insufficient to handle the high number of tasks generated by access devices. Additionally, some mobile devices may not fully utilize their computing resources. To maximize the use of resources, we propose a novel edge computing system architecture consisting of a resource-constrained edge server and three computing groups. Tasks from each group can be offloaded to either the edge server or the corresponding computing group for execution. We focus on optimizing the computation offloading of devices to minimize the maximum overall task processing latency in the system. This problem is proved to be NP-hard. To solve it, we propose a DQN-based resource utilization task scheduling (DQNRTS) algorithm that has two desirable characteristics: 1) it effectively utilizes the computing resources in the system and 2) it uses deep reinforcement learning to make intelligent scheduling decisions based on system state information. Experimental results demonstrate that the DQNRTS algorithm is capable of reducing the processing latency of the system by converging to optimal solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HORSE047完成签到,获得积分10
刚刚
刚刚
烟花应助33采纳,获得30
3秒前
大大哈哈完成签到 ,获得积分10
5秒前
ZZZZZZZZF完成签到,获得积分10
6秒前
sjy发布了新的文献求助10
6秒前
7秒前
8秒前
vxi完成签到,获得积分10
10秒前
10秒前
Akim应助脑残骑士老张采纳,获得10
11秒前
马康辉关注了科研通微信公众号
13秒前
15秒前
混子发布了新的文献求助10
15秒前
笑一笑发布了新的文献求助30
16秒前
共享精神应助长言采纳,获得10
17秒前
乐观小之应助xuan采纳,获得10
18秒前
Jinna706完成签到,获得积分10
19秒前
20秒前
澄碧星林完成签到,获得积分10
22秒前
闪闪的完成签到,获得积分10
22秒前
听风完成签到,获得积分10
22秒前
zhu完成签到 ,获得积分10
23秒前
Rein完成签到,获得积分10
23秒前
有魅力的凡灵完成签到,获得积分10
24秒前
25秒前
orixero应助LUK_采纳,获得10
26秒前
科目三应助孤独的珩采纳,获得10
26秒前
27秒前
27秒前
30秒前
无忧无虑完成签到,获得积分10
30秒前
预现ls发布了新的文献求助10
32秒前
32秒前
呆萌冷风发布了新的文献求助10
33秒前
34秒前
35秒前
35秒前
量子星尘发布了新的文献求助30
36秒前
躺在云上看星星完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958225
求助须知:如何正确求助?哪些是违规求助? 3504388
关于积分的说明 11118283
捐赠科研通 3235682
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565