亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vision Transformer-Based Multilabel Survival Prediction for Oropharynx Cancer After Radiation Therapy

医学 人工智能 放射治疗 变压器 肿瘤科 计算机科学 内科学 工程类 电气工程 电压
作者
Meixu Chen,Kai Wang,Jing Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:118 (4): 1123-1134 被引量:1
标识
DOI:10.1016/j.ijrobp.2023.10.022
摘要

PurposeA reliable and comprehensive cancer prognosis model for oropharyngeal cancer (OPC) could better assist in personalizing treatment. In this work, we developed a vision transformer-based (ViT-based) multilabel model with multimodal input to learn complementary information from available pretreatment data and predict multiple associated endpoints for radiation therapy for patients with OPC.Methods and MaterialsA publicly available data set of 512 patients with OPC was used for both model training and evaluation. Planning computed tomography images, primary gross tumor volume masks, and 16 clinical variables representing patient demographics, diagnosis, and treatment were used as inputs. To extract deep image features with global attention, we used a ViT module. Clinical variables were concatenated with the learned image features and fed into fully connected layers to incorporate cross-modality features. To learn the mapping between the features and correlated survival outcomes, including overall survival, local failure-free survival, regional failure-free survival, and distant failure-free survival, we employed 4 multitask logistic regression layers. The proposed model was optimized by combining the multitask logistic regression negative-log likelihood losses of different prediction targets.ResultsWe employed the C-index and area under the curve metrics to assess the performance of our model for time-to-event prediction and time-specific binary prediction, respectively. Our proposed model outperformed corresponding single-modality and single-label models on all prediction labels, achieving C-indices of 0.773, 0.765, 0.776, and 0.773 for overall survival, local failure-free survival, regional failure-free survival, and distant failure-free survival, respectively. The area under the curve values ranged between 0.799 and 0.844 for different tasks at different time points. Using the medians of predicted risks as the thresholds to identify high-risk and low-risk patient groups, we performed the log-rank test, the results of which showed significantly larger separations in different event-free survivals.ConclusionWe developed the first model capable of predicting multiple labels for OPC simultaneously. Our model demonstrated better prognostic ability for all the prediction targets compared with corresponding single-modality models and single-label models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
滕皓轩完成签到 ,获得积分20
4秒前
1分钟前
清脆语海发布了新的文献求助10
1分钟前
李爱国应助清脆语海采纳,获得10
1分钟前
1分钟前
1分钟前
MiaMia应助科研通管家采纳,获得30
1分钟前
科研通AI6应助科研通管家采纳,获得30
1分钟前
1分钟前
香蕉觅云应助zl采纳,获得10
1分钟前
zym完成签到 ,获得积分10
2分钟前
2分钟前
ZYP发布了新的文献求助10
3分钟前
深情安青应助朱羊羊采纳,获得10
3分钟前
3分钟前
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
4分钟前
zl发布了新的文献求助10
4分钟前
hhx完成签到,获得积分20
4分钟前
zl完成签到,获得积分10
4分钟前
Wei发布了新的文献求助10
5分钟前
科研通AI6应助曦耀采纳,获得10
5分钟前
小马哥完成签到,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4750040
关于积分的说明 15007251
捐赠科研通 4797884
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522880
关于科研通互助平台的介绍 1482534