Vision Transformer-Based Multilabel Survival Prediction for Oropharynx Cancer After Radiation Therapy

医学 人工智能 放射治疗 变压器 肿瘤科 计算机科学 内科学 工程类 电气工程 电压
作者
Meixu Chen,Kai Wang,Jing Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:118 (4): 1123-1134 被引量:1
标识
DOI:10.1016/j.ijrobp.2023.10.022
摘要

PurposeA reliable and comprehensive cancer prognosis model for oropharyngeal cancer (OPC) could better assist in personalizing treatment. In this work, we developed a vision transformer-based (ViT-based) multilabel model with multimodal input to learn complementary information from available pretreatment data and predict multiple associated endpoints for radiation therapy for patients with OPC.Methods and MaterialsA publicly available data set of 512 patients with OPC was used for both model training and evaluation. Planning computed tomography images, primary gross tumor volume masks, and 16 clinical variables representing patient demographics, diagnosis, and treatment were used as inputs. To extract deep image features with global attention, we used a ViT module. Clinical variables were concatenated with the learned image features and fed into fully connected layers to incorporate cross-modality features. To learn the mapping between the features and correlated survival outcomes, including overall survival, local failure-free survival, regional failure-free survival, and distant failure-free survival, we employed 4 multitask logistic regression layers. The proposed model was optimized by combining the multitask logistic regression negative-log likelihood losses of different prediction targets.ResultsWe employed the C-index and area under the curve metrics to assess the performance of our model for time-to-event prediction and time-specific binary prediction, respectively. Our proposed model outperformed corresponding single-modality and single-label models on all prediction labels, achieving C-indices of 0.773, 0.765, 0.776, and 0.773 for overall survival, local failure-free survival, regional failure-free survival, and distant failure-free survival, respectively. The area under the curve values ranged between 0.799 and 0.844 for different tasks at different time points. Using the medians of predicted risks as the thresholds to identify high-risk and low-risk patient groups, we performed the log-rank test, the results of which showed significantly larger separations in different event-free survivals.ConclusionWe developed the first model capable of predicting multiple labels for OPC simultaneously. Our model demonstrated better prognostic ability for all the prediction targets compared with corresponding single-modality models and single-label models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
11111完成签到,获得积分10
3秒前
ding应助子不语采纳,获得10
3秒前
3秒前
4秒前
万能图书馆应助橙子采纳,获得10
4秒前
qqqq完成签到,获得积分10
4秒前
5秒前
wd34完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助3333采纳,获得10
6秒前
乐乐应助烤麸采纳,获得10
7秒前
8秒前
菜鸟且小白完成签到,获得积分20
8秒前
8秒前
Simon1640发布了新的文献求助10
9秒前
轻松囧发布了新的文献求助10
9秒前
丘比特应助CNYDNZB采纳,获得10
9秒前
城南发布了新的文献求助10
10秒前
九日完成签到,获得积分10
11秒前
11秒前
背后寒烟发布了新的文献求助10
12秒前
小医森完成签到 ,获得积分10
12秒前
平淡伊布发布了新的文献求助10
12秒前
qqqq发布了新的文献求助10
13秒前
13秒前
13秒前
Dr_Seurin完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
虫子完成签到,获得积分10
17秒前
CipherSage应助无聊的板栗采纳,获得10
17秒前
研友_VZG7GZ应助TOP采纳,获得10
17秒前
典希子发布了新的文献求助30
17秒前
所所应助gao采纳,获得10
18秒前
3333发布了新的文献求助10
18秒前
淡定的海冬完成签到,获得积分10
19秒前
Yeteen完成签到,获得积分10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936