亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Vision Transformer-Based Multilabel Survival Prediction for Oropharynx Cancer After Radiation Therapy

医学 人工智能 放射治疗 变压器 肿瘤科 计算机科学 内科学 工程类 电气工程 电压
作者
Meixu Chen,Kai Wang,Jing Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:118 (4): 1123-1134 被引量:1
标识
DOI:10.1016/j.ijrobp.2023.10.022
摘要

PurposeA reliable and comprehensive cancer prognosis model for oropharyngeal cancer (OPC) could better assist in personalizing treatment. In this work, we developed a vision transformer-based (ViT-based) multilabel model with multimodal input to learn complementary information from available pretreatment data and predict multiple associated endpoints for radiation therapy for patients with OPC.Methods and MaterialsA publicly available data set of 512 patients with OPC was used for both model training and evaluation. Planning computed tomography images, primary gross tumor volume masks, and 16 clinical variables representing patient demographics, diagnosis, and treatment were used as inputs. To extract deep image features with global attention, we used a ViT module. Clinical variables were concatenated with the learned image features and fed into fully connected layers to incorporate cross-modality features. To learn the mapping between the features and correlated survival outcomes, including overall survival, local failure-free survival, regional failure-free survival, and distant failure-free survival, we employed 4 multitask logistic regression layers. The proposed model was optimized by combining the multitask logistic regression negative-log likelihood losses of different prediction targets.ResultsWe employed the C-index and area under the curve metrics to assess the performance of our model for time-to-event prediction and time-specific binary prediction, respectively. Our proposed model outperformed corresponding single-modality and single-label models on all prediction labels, achieving C-indices of 0.773, 0.765, 0.776, and 0.773 for overall survival, local failure-free survival, regional failure-free survival, and distant failure-free survival, respectively. The area under the curve values ranged between 0.799 and 0.844 for different tasks at different time points. Using the medians of predicted risks as the thresholds to identify high-risk and low-risk patient groups, we performed the log-rank test, the results of which showed significantly larger separations in different event-free survivals.ConclusionWe developed the first model capable of predicting multiple labels for OPC simultaneously. Our model demonstrated better prognostic ability for all the prediction targets compared with corresponding single-modality models and single-label models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助feifei采纳,获得10
3秒前
17秒前
45秒前
50秒前
57秒前
hongtao完成签到 ,获得积分10
58秒前
半城微凉应助科研通管家采纳,获得10
1分钟前
1分钟前
可爱的函函应助zzzsh采纳,获得10
1分钟前
1分钟前
guoze发布了新的文献求助10
1分钟前
snail完成签到,获得积分10
2分钟前
2分钟前
556发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
guoze发布了新的文献求助30
2分钟前
爱听歌书芹关注了科研通微信公众号
2分钟前
平淡如天完成签到,获得积分10
2分钟前
KSung完成签到 ,获得积分10
2分钟前
大模型应助Jason采纳,获得10
2分钟前
tishe7发布了新的文献求助10
3分钟前
3分钟前
3分钟前
张小美发布了新的文献求助10
3分钟前
半城微凉应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
tishe7完成签到,获得积分10
3分钟前
feifei发布了新的文献求助10
3分钟前
所所应助张小美采纳,获得10
3分钟前
乐乐应助qls123采纳,获得10
3分钟前
qls123完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
岸在海的深处完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
qls123发布了新的文献求助10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155601
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214