Vision Transformer-Based Multilabel Survival Prediction for Oropharynx Cancer After Radiation Therapy

医学 人工智能 放射治疗 变压器 肿瘤科 计算机科学 内科学 工程类 电气工程 电压
作者
Meixu Chen,Kai Wang,Jing Wang
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:118 (4): 1123-1134 被引量:1
标识
DOI:10.1016/j.ijrobp.2023.10.022
摘要

PurposeA reliable and comprehensive cancer prognosis model for oropharyngeal cancer (OPC) could better assist in personalizing treatment. In this work, we developed a vision transformer-based (ViT-based) multilabel model with multimodal input to learn complementary information from available pretreatment data and predict multiple associated endpoints for radiation therapy for patients with OPC.Methods and MaterialsA publicly available data set of 512 patients with OPC was used for both model training and evaluation. Planning computed tomography images, primary gross tumor volume masks, and 16 clinical variables representing patient demographics, diagnosis, and treatment were used as inputs. To extract deep image features with global attention, we used a ViT module. Clinical variables were concatenated with the learned image features and fed into fully connected layers to incorporate cross-modality features. To learn the mapping between the features and correlated survival outcomes, including overall survival, local failure-free survival, regional failure-free survival, and distant failure-free survival, we employed 4 multitask logistic regression layers. The proposed model was optimized by combining the multitask logistic regression negative-log likelihood losses of different prediction targets.ResultsWe employed the C-index and area under the curve metrics to assess the performance of our model for time-to-event prediction and time-specific binary prediction, respectively. Our proposed model outperformed corresponding single-modality and single-label models on all prediction labels, achieving C-indices of 0.773, 0.765, 0.776, and 0.773 for overall survival, local failure-free survival, regional failure-free survival, and distant failure-free survival, respectively. The area under the curve values ranged between 0.799 and 0.844 for different tasks at different time points. Using the medians of predicted risks as the thresholds to identify high-risk and low-risk patient groups, we performed the log-rank test, the results of which showed significantly larger separations in different event-free survivals.ConclusionWe developed the first model capable of predicting multiple labels for OPC simultaneously. Our model demonstrated better prognostic ability for all the prediction targets compared with corresponding single-modality models and single-label models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgl完成签到 ,获得积分20
1秒前
伯赏元彤发布了新的文献求助10
3秒前
Bin_Liu完成签到,获得积分20
3秒前
惜筠完成签到,获得积分10
4秒前
科研通AI2S应助Gu采纳,获得10
6秒前
生化爱科研完成签到,获得积分10
7秒前
传统的复天完成签到,获得积分10
7秒前
silin完成签到,获得积分10
8秒前
雨季不再来完成签到 ,获得积分10
10秒前
10秒前
伯赏元彤完成签到,获得积分10
11秒前
13秒前
16秒前
Dr发布了新的文献求助10
17秒前
19秒前
hope完成签到,获得积分10
19秒前
芒芒发paper完成签到 ,获得积分10
21秒前
简单的易云完成签到,获得积分10
25秒前
经纲完成签到 ,获得积分0
26秒前
顾矜应助Zhjie126采纳,获得10
26秒前
bkagyin应助Anonymous采纳,获得10
28秒前
英俊的铭应助Dr采纳,获得10
30秒前
不倦应助hkl1542采纳,获得10
31秒前
liubo完成签到,获得积分10
32秒前
32秒前
寒冷的月亮完成签到 ,获得积分10
37秒前
TH发布了新的文献求助10
39秒前
39秒前
孝铮完成签到 ,获得积分10
41秒前
辰荼白完成签到,获得积分10
41秒前
拼搏尔风完成签到,获得积分10
44秒前
Anonymous发布了新的文献求助10
45秒前
一个柔弱的读书人完成签到 ,获得积分10
46秒前
向往完成签到 ,获得积分10
49秒前
49秒前
53秒前
c123完成签到 ,获得积分10
54秒前
56秒前
江风海韵完成签到,获得积分10
56秒前
56秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212550
求助须知:如何正确求助?哪些是违规求助? 4388677
关于积分的说明 13664311
捐赠科研通 4249234
什么是DOI,文献DOI怎么找? 2331457
邀请新用户注册赠送积分活动 1329162
关于科研通互助平台的介绍 1282582