Transpiration cooling of a porous Nb-based alloy in high heat flux conditions

材料科学 热流密度 冷却液 临界热流密度 散热片 传热 热力学 机械 核工程 物理 工程类
作者
Kaitlyn M. Mullin,John H. Martin,Christopher S. Roper,Carlos G. Levi,Tresa M. Pollock
出处
期刊:International Journal of Thermal Sciences [Elsevier]
卷期号:196: 108758-108758 被引量:7
标识
DOI:10.1016/j.ijthermalsci.2023.108758
摘要

High heat flux environments, such as those encountered in atmospheric re-entry and nuclear fusion, impose severe thermal gradients and high local temperatures on structural components. Scalable heat transfer methods need to be integrated with structural designs to manage these extreme heat loads. Transpiration cooling is a potential approach for managing localized heating and maintaining structural durability in these environments. Capillary-driven transpiration cooling shows potential to adapt to dynamic heat flux conditions, but has not yet been investigated under high heat flux conditions. In this investigation, a porous structure was tested with active transpiration cooling under multiple heat flux conditions. Additive manufacturing was employed to produce a specimen with a tailored porous geometry using a refractory niobium-based alloy (C103). Water was selected as the coolant due to the high magnitude of energy absorbed during vaporization. To generate high heat flux environments for testing, an experimental apparatus that employs a high powered laser and corresponding characterization equipment has been designed. Coolant flow through the structure was driven by capillary forces, which enabled rapid adaptation to changes in heat flux from 132–330 W/cm2. Stable coolant flow rates and temperatures were observed under a range of constant high heat flux conditions. The C103 porous sample maintained average surface temperatures below 170 °C while subject to heat fluxes up to 330 W/cm2, indicating the transpiration cooling of the printed structure provided effective heat dissipation in these conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
啊啊阿啊阿完成签到 ,获得积分10
刚刚
Nathan发布了新的文献求助10
1秒前
筱谭完成签到 ,获得积分10
1秒前
友好冥王星完成签到 ,获得积分10
1秒前
靓丽的安筠完成签到,获得积分20
1秒前
羽毛发布了新的文献求助10
2秒前
墨水完成签到 ,获得积分10
2秒前
乾乾发布了新的文献求助10
2秒前
WANGGE发布了新的文献求助10
3秒前
valorb完成签到,获得积分10
3秒前
溪鱼完成签到,获得积分10
3秒前
哒哒哒发布了新的文献求助10
3秒前
香蕉觅云应助ly采纳,获得10
3秒前
medzhou完成签到,获得积分10
3秒前
sunrase完成签到,获得积分10
4秒前
咸菜发布了新的文献求助10
4秒前
kk关注了科研通微信公众号
5秒前
忐忑的蛋糕完成签到,获得积分10
5秒前
桃紫完成签到,获得积分10
5秒前
yhtu完成签到,获得积分10
5秒前
科研通AI2S应助快来天德采纳,获得10
6秒前
TEY完成签到 ,获得积分10
6秒前
包容的跳跳糖完成签到 ,获得积分20
7秒前
坚强的寒风完成签到,获得积分10
7秒前
魔幻若血完成签到,获得积分10
8秒前
8秒前
9秒前
PN_Allen完成签到,获得积分10
9秒前
ztt1221完成签到,获得积分10
9秒前
厄尔尼诺完成签到,获得积分10
10秒前
imcwj完成签到 ,获得积分10
10秒前
潇洒莞完成签到 ,获得积分10
10秒前
qianmo完成签到,获得积分10
10秒前
zhangwb完成签到,获得积分10
11秒前
size_t完成签到,获得积分10
11秒前
aaa完成签到,获得积分10
11秒前
Agoni完成签到,获得积分10
11秒前
Daryl完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556082
求助须知:如何正确求助?哪些是违规求助? 3131635
关于积分的说明 9392313
捐赠科研通 2831483
什么是DOI,文献DOI怎么找? 1556442
邀请新用户注册赠送积分活动 726605
科研通“疑难数据库(出版商)”最低求助积分说明 715912