Impurity gas monitoring using ultrasonic sensing and neural networks: forward and inverse problems

超声波传感器 卷积神经网络 人工神经网络 灵敏度(控制系统) 反向 材料科学 声学 杂质 反问题 计算机科学 环境科学 人工智能 化学 物理 数学 工程类 电子工程 原子物理学 数学分析 几何学 有机化学
作者
Bozhou Zhuang,Bora Gencturk,Assad A. Oberai,Harisankar Ramaswamy,Ryan M. Meyer
出处
期刊:Measurement [Elsevier BV]
卷期号:223: 113822-113822 被引量:6
标识
DOI:10.1016/j.measurement.2023.113822
摘要

Ultrasonic sensing is a non-invasive technique for monitoring impurity gas composition in various industrial applications where safety and regulatory compliance are crucial. In this study, ultrasonic sensing and neural networks were used to analyze impurity gases (i.e., air and argon) in helium. An experimental platform was established to acquire ultrasonic data. In the forward problem, an artificial neural network (ANN) model was used to forecast the response and time-of-flight (TOF) based on the excitation, and argon and air concentrations. The inverse problem was solved using a convolutional neural network (CNN) to predict the argon and air concentrations given the ultrasonic response and excitation. The results showed that the ANN accurately predicted the ultrasonic response and the change in TOF with concentration. As the air concentration was increased from 0 to 9.8%, the TOF sensitivity to detect argon decreased by 39.8% and 16.1% from ANN and sound speed theory, respectively. The CNN demonstrated high accuracy in predicting concentrations for inputs in the testing dataset. The application of the trained CNN indicated that it over-predicts air concentration while under-predicting the argon concentration. To improve accuracy, the predicted air and argon concentrations should be corrected by -0.992% and 1.027% bias, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美的魂幽完成签到 ,获得积分10
刚刚
ruochenzu发布了新的文献求助10
1秒前
2秒前
Tao完成签到,获得积分10
2秒前
cst发布了新的文献求助30
3秒前
安静曼寒发布了新的文献求助10
4秒前
抹茶牛奶配布丁完成签到 ,获得积分10
4秒前
晓湫发布了新的文献求助10
6秒前
7秒前
7秒前
可爱的函函应助小巧怀薇采纳,获得10
8秒前
jfc发布了新的文献求助10
8秒前
ALALEI发布了新的文献求助20
8秒前
11秒前
Lymoon完成签到,获得积分10
12秒前
fdvs完成签到,获得积分10
12秒前
13秒前
汉堡包应助超帅的半凡采纳,获得10
14秒前
15秒前
15秒前
16秒前
Nick应助cst采纳,获得30
17秒前
18秒前
羊羽完成签到,获得积分10
18秒前
Stella1222发布了新的文献求助10
18秒前
英勇的鲂完成签到,获得积分10
20秒前
21秒前
liaodongjun应助图雄争霸采纳,获得10
21秒前
24秒前
小呆子发布了新的文献求助10
24秒前
丘比特应助英勇的鲂采纳,获得10
24秒前
SciGPT应助妮妮采纳,获得10
25秒前
恣意完成签到 ,获得积分10
26秒前
灵素完成签到,获得积分10
27秒前
真是麻烦完成签到 ,获得积分10
27秒前
28秒前
30秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952669
求助须知:如何正确求助?哪些是违规求助? 3498162
关于积分的说明 11090517
捐赠科研通 3228748
什么是DOI,文献DOI怎么找? 1785066
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801349