Active bone marrow segmentation based on computed tomography imaging in anal cancer patients: A machine-learning-based proof of concept

分割 肛癌 核医学 医学 骨髓 骨盆 正电子发射断层摄影术 放射科 癌症 人工智能 计算机科学 病理 内科学
作者
C. Fiandra,Samanta Rosati,Francesca Arcadipane,N. Dinapoli,Marco Fato,Pierfrancesco Franco,E. Gallio,D. Scaffidi Gennarino,P. Silvetti,S. Zara,Umberto Ricardi,Gabriella Balestra
出处
期刊:Physica Medica [Elsevier]
卷期号:113: 102657-102657
标识
DOI:10.1016/j.ejmp.2023.102657
摘要

Purpose Different methods are available to identify haematopoietically active bone marrow (ActBM). However, their use can be challenging for radiotherapy routine treatments, since they require specific equipment and dedicated time. A machine learning (ML) approach, based on radiomic features as inputs to three different classifiers, was applied to computed tomography (CT) images to identify haematopoietically active bone marrow in anal cancer patients. Methods A total of 40 patients was assigned to the construction set (training set + test set). Fluorine-18-Fluorodeoxyglucose Positron Emission Tomography (18FDG-PET) images were used to detect the active part of the pelvic bone marrow (ActPBM) and stored as ground-truth for three subregions: iliac, lower pelvis and lumbosacral bone marrow (ActIBM, ActLPBM, ActLSBM). Three parameters were used for the correspondence analyses between 18FDG-PET and ML classifiers: DICE index, Precision and Recall. Results For the 40-patient cohort, median values [min; max] of the Dice index were 0.69 [0.20; 0.84], 0.76 [0.25; 0.89], and 0.36 [0.15; 0.67] for ActIBM, ActLSBM, and ActLPBM, respectively. The Precision/Recall (P/R) ratio median value for the ActLPBM structure was 0.59 [0.20; 1.84] (over segmentation), while for the other two subregions the P/R ratio median has values of 1.249 [0.43; 4.15] for ActIBM and 1.093 [0.24; 1.91] for ActLSBM (under segmentation). Conclusion A satisfactory degree of overlap compared to 18FDG-PET was found for 2 out of the 3 subregions within pelvic bones. Further optimization and generalization of the process is required before clinical implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ckk发布了新的文献求助10
1秒前
1秒前
cdgbdfbsfdvsd发布了新的文献求助10
2秒前
模糊中正应助llx采纳,获得30
3秒前
Mango完成签到,获得积分10
3秒前
Akim应助范式采纳,获得10
4秒前
仙林AK47发布了新的文献求助10
6秒前
李健的小迷弟应助liming采纳,获得10
7秒前
糕糕完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
9秒前
10秒前
10秒前
秋子完成签到,获得积分10
10秒前
11秒前
11秒前
李健的小迷弟应助糕糕采纳,获得10
12秒前
丘比特应助ruiruiwang采纳,获得10
12秒前
老詹头完成签到,获得积分10
13秒前
Jasper应助研友_LX7Jq8采纳,获得10
14秒前
Survivor发布了新的文献求助10
14秒前
16秒前
HNNUYanY应助Volcano采纳,获得10
16秒前
既然发布了新的文献求助10
16秒前
zbsy2发布了新的文献求助10
17秒前
加贝完成签到,获得积分20
17秒前
xiaogun发布了新的文献求助100
18秒前
科研通AI2S应助牧析山采纳,获得10
19秒前
朱佳慧发布了新的文献求助10
21秒前
延胡索完成签到,获得积分10
21秒前
zbsy2完成签到,获得积分10
22秒前
lan完成签到,获得积分10
22秒前
大个应助聪明蛋采纳,获得10
23秒前
rebeccahu应助吱吱采纳,获得10
24秒前
24秒前
26秒前
小秦完成签到,获得积分10
27秒前
这位同学不知道叫什么好完成签到,获得积分10
28秒前
高分求助中
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 520
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464481
求助须知:如何正确求助?哪些是违规求助? 3057850
关于积分的说明 9058824
捐赠科研通 2747974
什么是DOI,文献DOI怎么找? 1507674
科研通“疑难数据库(出版商)”最低求助积分说明 696627
邀请新用户注册赠送积分活动 696248