亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Oil well production prediction based on CNN-LSTM model with self-attention mechanism

计算机科学 人工智能 卷积神经网络 深度学习 人工神经网络 支持向量机 随机森林 石油生产 生产(经济) 模式识别(心理学) 机制(生物学) 机器学习 工程类 哲学 认识论 石油工程 经济 宏观经济学
作者
Shaowei Pan,Bo Yang,Shukai Wang,Zhi Guo,Lin Wang,Jinhua Liu,Siyu Wu
出处
期刊:Energy [Elsevier]
卷期号:284: 128701-128701 被引量:158
标识
DOI:10.1016/j.energy.2023.128701
摘要

To overcome the shortcomings in current study of oil well production prediction, we propose a combined model (CNN-LSTM-SA) with the convolutional neural network (CNN), the long short-term memory (LSTM) neural network and the self-attention mechanism (SA). The CNN-LSTM-SA model consists of five parts: input layer, CNN module, LSTM layer, self-attention layer and output layer. In this model, CNN is used to extract the spatiotemporal features of the input data, LSTM is used to extract the correlation information, and SA is used to capture the internal correlation. Compared with the traditional machine learning methods, such as linear regression (LR), support vector machine (SVM), random forest (RF), XGBoost and back propagation (BP) neural network; and deep learning methods, such as LSTM, LSTM-SA and CNN-LSTM, the CNN-LSTM-SA model can extract the spatial-temporal features that are hidden in oil well production data more comprehensively. It is enable to mine the internal correlation in oil well production data more precisely, thereby improving the accuracy of oil well production prediction. More specifically, among the existing methods, the CNN-LSTM-SA model achieves the best performance in terms of adaptation to the basic trend of oil well production and the prediction of specific values of oil well production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开胃咖喱完成签到,获得积分10
刚刚
Huzhu发布了新的文献求助10
6秒前
Tania完成签到,获得积分10
9秒前
17秒前
20秒前
21秒前
cometx发布了新的文献求助10
23秒前
25秒前
花陵完成签到 ,获得积分10
51秒前
帅气的熊猫完成签到,获得积分10
53秒前
粽子完成签到,获得积分10
54秒前
彭于晏应助阿瓜师傅采纳,获得10
55秒前
57秒前
不才完成签到,获得积分10
58秒前
cometx完成签到,获得积分10
59秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
1分钟前
去码头整点薯条完成签到,获得积分10
1分钟前
徐per爱豆完成签到 ,获得积分10
1分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
ADcal完成签到 ,获得积分10
2分钟前
2分钟前
badabadaba关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
badabadaba发布了新的文献求助30
2分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
金沐栋发布了新的文献求助10
3分钟前
3分钟前
濮阳灵竹完成签到,获得积分10
3分钟前
魏欣娜发布了新的文献求助10
3分钟前
左左曦完成签到,获得积分10
4分钟前
123发布了新的文献求助10
4分钟前
魏欣娜发布了新的文献求助10
4分钟前
隐形曼青应助我爱吹小牛采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177