Analysing gender differences in the perceived safety from street view imagery

感知 更安全的 心理学 地理 应用心理学 社会心理学 计算机安全 计算机科学 神经科学
作者
Qinyu Cui,Yan Zhang,Guang Yang,Yi-Ting Huang,Yu Chen
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103537-103537 被引量:10
标识
DOI:10.1016/j.jag.2023.103537
摘要

The relationship between the built environment and human perception of safety is well recognised in a growing literature of urban studies. However, there is a lack of attention to gender differences in perceptions of place, particularly in studies that assess perceived safety using street view images (SVIs). This limitation hinders the comprehensive assessment of safety perceptions. Traditional analyses that combine gender or focus on men do not adequately address women's specific needs to feel safe. To rectify this, the 60 participants were divided into two groups based on gender. Their perceived safety scores on 1,034 SVIs, and we used regression analysis to infer similarities and differences in streetscape elements that influence the safety scores between genders. Secondly, a machine learning model was trained, considering approximately thirty streetscape elements, and used to predict the safety scores of SVIs in the city. Finally, the spatial distribution of perceived differences between genders was visualised, and portraits of the different scenes were depicted. The results show that 1) both genders' safety scores are mainly influenced by elements such as "Road", "Sidewalk", and "Car", while the impact of "Bridge" varied between genders. 2) A high correlation was observed between the predicted safety scores for women and men. However, women deemed 63% of scenes unsafe, compared to men who considered only 23% of scenes unsafe, indicating a 40% difference. 3) The safer the scene is, the smaller the difference in perception between genders. Conversely, the more unsafe the scene, the weaker women's perceptions of safety are compared to men's. Our findings can extend the rules of urban safety assessment (serving women) and create an inclusive urban street environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
月宸发布了新的文献求助10
1秒前
2秒前
Jaden发布了新的文献求助10
4秒前
Ding发布了新的文献求助10
7秒前
7秒前
Van完成签到 ,获得积分10
9秒前
orange完成签到,获得积分10
11秒前
孙傲完成签到,获得积分10
11秒前
12秒前
小二郎应助狂野映寒采纳,获得10
13秒前
Eternitymaria完成签到,获得积分10
13秒前
顾矜应助赵晴采纳,获得10
16秒前
星辰发布了新的文献求助30
16秒前
研友_Zb1rln发布了新的文献求助10
16秒前
小媛媛完成签到,获得积分10
16秒前
shelly发布了新的文献求助10
17秒前
Amazing完成签到 ,获得积分10
17秒前
大模型应助圆圆采纳,获得10
19秒前
善学以致用应助开放幻丝采纳,获得10
20秒前
懦弱的博涛应助文件撤销了驳回
20秒前
呐呐呐发布了新的文献求助10
22秒前
yuhang完成签到,获得积分10
22秒前
领导范儿应助暄暄大王采纳,获得10
23秒前
25秒前
25秒前
SharonDu完成签到 ,获得积分10
26秒前
lingVing瑜完成签到 ,获得积分10
28秒前
Jojo完成签到,获得积分10
28秒前
NexusExplorer应助星辰采纳,获得10
29秒前
赵晴发布了新的文献求助10
29秒前
孙新月发布了新的文献求助10
29秒前
vicky完成签到,获得积分10
29秒前
Owen应助活力惜海采纳,获得10
30秒前
脑洞疼应助任性映秋采纳,获得10
30秒前
雪城完成签到,获得积分10
30秒前
如意的灵枫完成签到 ,获得积分10
31秒前
小丑鱼儿完成签到 ,获得积分10
32秒前
roselau完成签到,获得积分0
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400