Analysing gender differences in the perceived safety from street view imagery

感知 更安全的 心理学 地理 应用心理学 社会心理学 计算机安全 计算机科学 神经科学
作者
Qinyu Cui,Yan Zhang,Guang Yang,Yi-Ting Huang,Yu Chen
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103537-103537 被引量:10
标识
DOI:10.1016/j.jag.2023.103537
摘要

The relationship between the built environment and human perception of safety is well recognised in a growing literature of urban studies. However, there is a lack of attention to gender differences in perceptions of place, particularly in studies that assess perceived safety using street view images (SVIs). This limitation hinders the comprehensive assessment of safety perceptions. Traditional analyses that combine gender or focus on men do not adequately address women's specific needs to feel safe. To rectify this, the 60 participants were divided into two groups based on gender. Their perceived safety scores on 1,034 SVIs, and we used regression analysis to infer similarities and differences in streetscape elements that influence the safety scores between genders. Secondly, a machine learning model was trained, considering approximately thirty streetscape elements, and used to predict the safety scores of SVIs in the city. Finally, the spatial distribution of perceived differences between genders was visualised, and portraits of the different scenes were depicted. The results show that 1) both genders' safety scores are mainly influenced by elements such as "Road", "Sidewalk", and "Car", while the impact of "Bridge" varied between genders. 2) A high correlation was observed between the predicted safety scores for women and men. However, women deemed 63% of scenes unsafe, compared to men who considered only 23% of scenes unsafe, indicating a 40% difference. 3) The safer the scene is, the smaller the difference in perception between genders. Conversely, the more unsafe the scene, the weaker women's perceptions of safety are compared to men's. Our findings can extend the rules of urban safety assessment (serving women) and create an inclusive urban street environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一梦倾城发布了新的文献求助10
2秒前
knight7m完成签到 ,获得积分10
3秒前
清塘夜谈完成签到,获得积分10
3秒前
3秒前
CNAxiaozhu7举报稳重向南求助涉嫌违规
4秒前
英姑应助慈祥的碧采纳,获得10
5秒前
hmhu完成签到,获得积分10
5秒前
zhuazhua完成签到 ,获得积分10
5秒前
hmhu发布了新的文献求助10
8秒前
浮游应助透视眼采纳,获得10
9秒前
10秒前
12秒前
luoqin完成签到 ,获得积分10
14秒前
15秒前
18秒前
慈祥的碧发布了新的文献求助10
19秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
20秒前
打野完成签到,获得积分10
20秒前
FashionBoy应助123采纳,获得10
21秒前
21秒前
共享精神应助军军问问张采纳,获得10
21秒前
春花发布了新的文献求助10
23秒前
Evander发布了新的文献求助20
24秒前
26秒前
Smilegate发布了新的文献求助10
26秒前
所所应助优美的明辉采纳,获得30
27秒前
ivy发布了新的文献求助10
31秒前
有机发布了新的文献求助20
31秒前
31秒前
46464发布了新的文献求助10
35秒前
闲鱼医生应助vivre223采纳,获得10
37秒前
孩子气完成签到,获得积分10
37秒前
123发布了新的文献求助10
38秒前
酷波er应助tlm采纳,获得10
39秒前
科研通AI5应助火龙果采纳,获得10
40秒前
41秒前
Aliya完成签到 ,获得积分10
42秒前
46秒前
刻苦剑封关注了科研通微信公众号
47秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545043
求助须知:如何正确求助?哪些是违规求助? 3976862
关于积分的说明 12315203
捐赠科研通 3644985
什么是DOI,文献DOI怎么找? 2007296
邀请新用户注册赠送积分活动 1042900
科研通“疑难数据库(出版商)”最低求助积分说明 931746