Analysing gender differences in the perceived safety from street view imagery

感知 更安全的 心理学 地理 应用心理学 社会心理学 计算机安全 计算机科学 神经科学
作者
Qinyu Cui,Yan Zhang,Guang Yang,Yi-Ting Huang,Yu Chen
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103537-103537 被引量:10
标识
DOI:10.1016/j.jag.2023.103537
摘要

The relationship between the built environment and human perception of safety is well recognised in a growing literature of urban studies. However, there is a lack of attention to gender differences in perceptions of place, particularly in studies that assess perceived safety using street view images (SVIs). This limitation hinders the comprehensive assessment of safety perceptions. Traditional analyses that combine gender or focus on men do not adequately address women's specific needs to feel safe. To rectify this, the 60 participants were divided into two groups based on gender. Their perceived safety scores on 1,034 SVIs, and we used regression analysis to infer similarities and differences in streetscape elements that influence the safety scores between genders. Secondly, a machine learning model was trained, considering approximately thirty streetscape elements, and used to predict the safety scores of SVIs in the city. Finally, the spatial distribution of perceived differences between genders was visualised, and portraits of the different scenes were depicted. The results show that 1) both genders' safety scores are mainly influenced by elements such as "Road", "Sidewalk", and "Car", while the impact of "Bridge" varied between genders. 2) A high correlation was observed between the predicted safety scores for women and men. However, women deemed 63% of scenes unsafe, compared to men who considered only 23% of scenes unsafe, indicating a 40% difference. 3) The safer the scene is, the smaller the difference in perception between genders. Conversely, the more unsafe the scene, the weaker women's perceptions of safety are compared to men's. Our findings can extend the rules of urban safety assessment (serving women) and create an inclusive urban street environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫麒麟完成签到,获得积分10
刚刚
1秒前
我没有名字完成签到,获得积分10
1秒前
科学宇宙完成签到,获得积分20
1秒前
hh完成签到 ,获得积分10
1秒前
11发布了新的文献求助10
3秒前
科学宇宙发布了新的文献求助10
3秒前
cnyyp完成签到,获得积分10
4秒前
crazy发布了新的文献求助10
4秒前
AAA卡车司机完成签到,获得积分10
5秒前
无奈梦岚发布了新的文献求助10
6秒前
艾玛完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
9秒前
领导范儿应助单于青荷采纳,获得10
9秒前
Xwu发布了新的文献求助10
10秒前
墨墨完成签到,获得积分10
10秒前
科研通AI2S应助赵宇宙采纳,获得10
10秒前
Hello应助mizhou采纳,获得10
11秒前
梅伊斯完成签到 ,获得积分10
12秒前
12秒前
嘉嘉琦发布了新的文献求助10
13秒前
小行星发布了新的文献求助10
13秒前
14秒前
14秒前
顺顺发布了新的文献求助10
15秒前
缓慢思枫完成签到,获得积分10
19秒前
CodeCraft应助小行星采纳,获得10
19秒前
星沉静默发布了新的文献求助10
20秒前
DDDDD发布了新的文献求助10
20秒前
赎罪发布了新的文献求助10
20秒前
浅斟低唱发布了新的文献求助20
20秒前
苗条的小肥羊完成签到,获得积分10
21秒前
21秒前
隐形曼青应助一团采纳,获得10
21秒前
艾玛发布了新的文献求助10
22秒前
乐乐应助顺顺采纳,获得10
24秒前
SciGPT应助ly采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991995
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260801
捐赠科研通 3272413
什么是DOI,文献DOI怎么找? 1805820
邀请新用户注册赠送积分活动 882665
科研通“疑难数据库(出版商)”最低求助积分说明 809425