Analysing gender differences in the perceived safety from street view imagery

感知 更安全的 心理学 地理 应用心理学 社会心理学 计算机安全 计算机科学 神经科学
作者
Qinyu Cui,Yan Zhang,Guang Yang,Yi-Ting Huang,Yu Chen
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103537-103537 被引量:10
标识
DOI:10.1016/j.jag.2023.103537
摘要

The relationship between the built environment and human perception of safety is well recognised in a growing literature of urban studies. However, there is a lack of attention to gender differences in perceptions of place, particularly in studies that assess perceived safety using street view images (SVIs). This limitation hinders the comprehensive assessment of safety perceptions. Traditional analyses that combine gender or focus on men do not adequately address women's specific needs to feel safe. To rectify this, the 60 participants were divided into two groups based on gender. Their perceived safety scores on 1,034 SVIs, and we used regression analysis to infer similarities and differences in streetscape elements that influence the safety scores between genders. Secondly, a machine learning model was trained, considering approximately thirty streetscape elements, and used to predict the safety scores of SVIs in the city. Finally, the spatial distribution of perceived differences between genders was visualised, and portraits of the different scenes were depicted. The results show that 1) both genders' safety scores are mainly influenced by elements such as "Road", "Sidewalk", and "Car", while the impact of "Bridge" varied between genders. 2) A high correlation was observed between the predicted safety scores for women and men. However, women deemed 63% of scenes unsafe, compared to men who considered only 23% of scenes unsafe, indicating a 40% difference. 3) The safer the scene is, the smaller the difference in perception between genders. Conversely, the more unsafe the scene, the weaker women's perceptions of safety are compared to men's. Our findings can extend the rules of urban safety assessment (serving women) and create an inclusive urban street environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
advance完成签到,获得积分0
刚刚
bkagyin应助RRReol采纳,获得10
刚刚
斯文败类应助carbon采纳,获得10
1秒前
weilong完成签到,获得积分10
1秒前
昵称发布了新的文献求助10
1秒前
1秒前
刘先生发布了新的文献求助10
1秒前
2秒前
阿凉发布了新的文献求助10
2秒前
Elan发布了新的文献求助10
3秒前
Mry发布了新的文献求助10
3秒前
研友_ngJQzL发布了新的文献求助10
4秒前
Luna完成签到 ,获得积分10
4秒前
在秦岭喝豆浆的北极熊完成签到 ,获得积分10
4秒前
tz666666发布了新的文献求助20
5秒前
5秒前
Lz发布了新的文献求助10
5秒前
动听曼荷发布了新的文献求助10
7秒前
ZZZ完成签到,获得积分10
7秒前
上官若男应助kingwill采纳,获得20
8秒前
9秒前
9秒前
一一给一一的求助进行了留言
10秒前
隐形曼青应助胡豆采纳,获得10
10秒前
10秒前
11秒前
12秒前
科目三应助苹果紊采纳,获得10
12秒前
12秒前
Mry完成签到,获得积分10
12秒前
11完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
研友_ngJQzL完成签到,获得积分10
14秒前
14秒前
15秒前
Elan完成签到,获得积分10
15秒前
范范完成签到,获得积分20
16秒前
胡豆完成签到,获得积分10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226893
求助须知:如何正确求助?哪些是违规求助? 4398122
关于积分的说明 13688592
捐赠科研通 4262833
什么是DOI,文献DOI怎么找? 2339293
邀请新用户注册赠送积分活动 1336675
关于科研通互助平台的介绍 1292735