Analysing gender differences in the perceived safety from street view imagery

感知 更安全的 心理学 地理 应用心理学 社会心理学 计算机安全 计算机科学 神经科学
作者
Qinyu Cui,Yan Zhang,Guang Yang,Yi-Ting Huang,Yu Chen
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103537-103537 被引量:10
标识
DOI:10.1016/j.jag.2023.103537
摘要

The relationship between the built environment and human perception of safety is well recognised in a growing literature of urban studies. However, there is a lack of attention to gender differences in perceptions of place, particularly in studies that assess perceived safety using street view images (SVIs). This limitation hinders the comprehensive assessment of safety perceptions. Traditional analyses that combine gender or focus on men do not adequately address women's specific needs to feel safe. To rectify this, the 60 participants were divided into two groups based on gender. Their perceived safety scores on 1,034 SVIs, and we used regression analysis to infer similarities and differences in streetscape elements that influence the safety scores between genders. Secondly, a machine learning model was trained, considering approximately thirty streetscape elements, and used to predict the safety scores of SVIs in the city. Finally, the spatial distribution of perceived differences between genders was visualised, and portraits of the different scenes were depicted. The results show that 1) both genders' safety scores are mainly influenced by elements such as "Road", "Sidewalk", and "Car", while the impact of "Bridge" varied between genders. 2) A high correlation was observed between the predicted safety scores for women and men. However, women deemed 63% of scenes unsafe, compared to men who considered only 23% of scenes unsafe, indicating a 40% difference. 3) The safer the scene is, the smaller the difference in perception between genders. Conversely, the more unsafe the scene, the weaker women's perceptions of safety are compared to men's. Our findings can extend the rules of urban safety assessment (serving women) and create an inclusive urban street environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18062677029完成签到 ,获得积分10
1秒前
1秒前
Nathan发布了新的文献求助10
1秒前
2秒前
褚明雪完成签到,获得积分10
4秒前
xxaqs发布了新的文献求助10
5秒前
FashionBoy应助Ysn采纳,获得10
5秒前
......发布了新的文献求助30
6秒前
充电宝应助机灵千万采纳,获得10
7秒前
淡淡冰薇完成签到,获得积分10
7秒前
hhh发布了新的文献求助10
9秒前
可靠薯片完成签到,获得积分10
12秒前
RAmos_1982完成签到,获得积分10
12秒前
13秒前
米妮发布了新的文献求助10
14秒前
breath完成签到,获得积分10
14秒前
小巧半芹关注了科研通微信公众号
14秒前
李健的小迷弟应助明明采纳,获得10
15秒前
16秒前
17秒前
17秒前
袁奇点完成签到,获得积分10
18秒前
21秒前
大可完成签到,获得积分10
21秒前
JingyuHuang发布了新的文献求助10
22秒前
22秒前
嘻嘻完成签到 ,获得积分10
24秒前
25秒前
25秒前
26秒前
万听白发布了新的文献求助10
26秒前
29秒前
30秒前
张烤明发布了新的文献求助10
30秒前
31秒前
bias发布了新的文献求助30
32秒前
小巧半芹发布了新的文献求助10
33秒前
Zxc发布了新的文献求助10
33秒前
奈落完成签到 ,获得积分10
34秒前
34秒前
高分求助中
System in Systemic Functional Linguistics A System-based Theory of Language 1000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3116642
求助须知:如何正确求助?哪些是违规求助? 2766571
关于积分的说明 7687509
捐赠科研通 2421981
什么是DOI,文献DOI怎么找? 1285996
科研通“疑难数据库(出版商)”最低求助积分说明 620173
版权声明 599837