亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysing gender differences in the perceived safety from street view imagery

感知 更安全的 心理学 地理 应用心理学 社会心理学 计算机安全 计算机科学 神经科学
作者
Qinyu Cui,Yan Zhang,Guang Yang,Yi-Ting Huang,Yu Chen
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:124: 103537-103537 被引量:10
标识
DOI:10.1016/j.jag.2023.103537
摘要

The relationship between the built environment and human perception of safety is well recognised in a growing literature of urban studies. However, there is a lack of attention to gender differences in perceptions of place, particularly in studies that assess perceived safety using street view images (SVIs). This limitation hinders the comprehensive assessment of safety perceptions. Traditional analyses that combine gender or focus on men do not adequately address women's specific needs to feel safe. To rectify this, the 60 participants were divided into two groups based on gender. Their perceived safety scores on 1,034 SVIs, and we used regression analysis to infer similarities and differences in streetscape elements that influence the safety scores between genders. Secondly, a machine learning model was trained, considering approximately thirty streetscape elements, and used to predict the safety scores of SVIs in the city. Finally, the spatial distribution of perceived differences between genders was visualised, and portraits of the different scenes were depicted. The results show that 1) both genders' safety scores are mainly influenced by elements such as "Road", "Sidewalk", and "Car", while the impact of "Bridge" varied between genders. 2) A high correlation was observed between the predicted safety scores for women and men. However, women deemed 63% of scenes unsafe, compared to men who considered only 23% of scenes unsafe, indicating a 40% difference. 3) The safer the scene is, the smaller the difference in perception between genders. Conversely, the more unsafe the scene, the weaker women's perceptions of safety are compared to men's. Our findings can extend the rules of urban safety assessment (serving women) and create an inclusive urban street environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Jack80完成签到,获得积分0
6秒前
浮游应助蚂蚁爱上树采纳,获得10
23秒前
28秒前
凤里完成签到 ,获得积分10
39秒前
49秒前
lele完成签到,获得积分10
1分钟前
1分钟前
ZZZ发布了新的文献求助10
1分钟前
GingerF应助Hayat采纳,获得50
1分钟前
jyy发布了新的文献求助10
1分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
研友_VZG7GZ应助十三采纳,获得10
2分钟前
科研通AI2S应助ZSN采纳,获得100
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
十三完成签到,获得积分10
2分钟前
许三问完成签到 ,获得积分0
2分钟前
sleepingfish应助百里幻竹采纳,获得10
2分钟前
ZZZ完成签到,获得积分10
2分钟前
2分钟前
3分钟前
ZSN发布了新的文献求助100
3分钟前
唐禹嘉完成签到 ,获得积分10
3分钟前
yb完成签到,获得积分10
3分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
唐泽雪穗应助科研通管家采纳,获得10
4分钟前
4分钟前
weibo完成签到,获得积分10
4分钟前
hhr完成签到 ,获得积分10
4分钟前
tj发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
香蕉觅云应助rerorero18采纳,获得10
4分钟前
5分钟前
111发布了新的文献求助10
5分钟前
111完成签到,获得积分20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
可见光通信专用集成电路及实时系统 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4880026
求助须知:如何正确求助?哪些是违规求助? 4166821
关于积分的说明 12927232
捐赠科研通 3925518
什么是DOI,文献DOI怎么找? 2154825
邀请新用户注册赠送积分活动 1172878
关于科研通互助平台的介绍 1076926