Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020

叶面积指数 环境科学 卫星 植被(病理学) 归一化差异植被指数 遥感 气候学 大气科学 地理 农学 地质学 医学 病理 航空航天工程 生物 工程类
作者
Sen Cao,Muyi Li,Zaichun Zhu,Zhe Wang,Junjun Zha,Weiqing Zhao,Zeyu Duanmu,Jiana Chen,Yaoyao Zheng,Yue Chen,Ranga B. Myneni,Shilong Piao
出处
期刊:Earth System Science Data 卷期号:15 (11): 4877-4899 被引量:26
标识
DOI:10.5194/essd-15-4877-2023
摘要

Abstract. Leaf area index (LAI) with an explicit biophysical meaning is a critical variable to characterize terrestrial ecosystems. Long-term global datasets of LAI have served as fundamental data support for monitoring vegetation dynamics and exploring its interactions with other Earth components. However, current LAI products face several limitations associated with spatiotemporal consistency. In this study, we employed the back propagation neural network (BPNN) and a data consolidation method to generate a new version of the half-month 1/12∘ Global Inventory Modeling and Mapping Studies (GIMMS) LAI product, i.e., GIMMS LAI4g, for the period 1982–2020. The significance of the GIMMS LAI4g was the use of the latest PKU GIMMS normalized difference vegetation index (NDVI) product and 3.6 million high-quality global Landsat LAI samples to remove the effects of satellite orbital drift and sensor degradation and to develop spatiotemporally consistent BPNN models. The results showed that the GIMMS LAI4g exhibited overall higher accuracy and lower underestimation than its predecessor (GIMMS LAI3g) and two mainstream LAI products (Global LAnd Surface Satellite (GLASS) LAI and Long-term Global Mapping (GLOBMAP) LAI) using field LAI measurements and Landsat LAI samples. Its validation against Landsat LAI samples revealed an R2 of 0.96, root mean square error of 0.32 m2 m−2, mean absolute error of 0.16 m2 m−2, and mean absolute percentage error of 13.6 % which meets the accuracy target proposed by the Global Climate Observation System. It outperformed other LAI products for most vegetation biomes in a majority area of the land. It efficiently eliminated the effects of satellite orbital drift and sensor degradation and presented a better temporal consistency before and after the year 2000. The consolidation with the reprocessed MODIS LAI allows the GIMMS LAI4g to extend the temporal coverage from 2015 to a recent period (2020), producing the LAI trend that maintains high consistency before and after 2000 and aligns with the reprocessed MODIS LAI trend during the MODIS era. The GIMMS LAI4g product could potentially facilitate mitigating the disagreements between studies of the long-term global vegetation changes and could also benefit the model development in earth and environmental sciences. The GIMMS LAI4g product is open access and available under Attribution 4.0 International at https://doi.org/10.5281/zenodo.7649107 (Cao et al., 2023).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
听白完成签到,获得积分10
1秒前
mini的yr完成签到 ,获得积分10
2秒前
顺利的曼寒完成签到 ,获得积分10
3秒前
赞zan发布了新的文献求助10
3秒前
4秒前
5秒前
北极星完成签到,获得积分10
5秒前
柚子完成签到 ,获得积分10
6秒前
yuzhou完成签到 ,获得积分10
6秒前
Maestro_S应助宁听白采纳,获得20
6秒前
feb完成签到,获得积分10
8秒前
Nitric_Oxide应助weslywang采纳,获得10
8秒前
9秒前
10秒前
orixero应助暴躁的信封采纳,获得10
11秒前
lisa发布了新的文献求助10
12秒前
万能图书馆应助赞zan采纳,获得10
13秒前
14秒前
14秒前
思源应助miku1采纳,获得10
15秒前
明亮灭绝发布了新的文献求助10
15秒前
小熊完成签到,获得积分10
15秒前
小飞发布了新的文献求助10
17秒前
17秒前
研友_nvkeBZ完成签到,获得积分10
18秒前
zzzkyt完成签到,获得积分10
19秒前
百宝完成签到,获得积分10
19秒前
20秒前
21秒前
王提完成签到,获得积分10
22秒前
22秒前
明亮灭绝完成签到,获得积分10
22秒前
胖胖玩啊玩完成签到 ,获得积分10
23秒前
25秒前
宁听白完成签到,获得积分10
25秒前
cjjwei完成签到 ,获得积分10
25秒前
Miki完成签到,获得积分10
26秒前
miku1发布了新的文献求助10
27秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825