Spatiotemporally consistent global dataset of the GIMMS leaf area index (GIMMS LAI4g) from 1982 to 2020

叶面积指数 环境科学 卫星 植被(病理学) 归一化差异植被指数 遥感 气候学 大气科学 地理 农学 地质学 医学 病理 航空航天工程 生物 工程类
作者
Sen Cao,Muyi Li,Zaichun Zhu,Zhe Wang,Junjun Zha,Weiqing Zhao,Zeyu Duanmu,Jiana Chen,Yaoyao Zheng,Yue Chen,Ranga B. Myneni,Shilong Piao
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:15 (11): 4877-4899 被引量:26
标识
DOI:10.5194/essd-15-4877-2023
摘要

Abstract. Leaf area index (LAI) with an explicit biophysical meaning is a critical variable to characterize terrestrial ecosystems. Long-term global datasets of LAI have served as fundamental data support for monitoring vegetation dynamics and exploring its interactions with other Earth components. However, current LAI products face several limitations associated with spatiotemporal consistency. In this study, we employed the back propagation neural network (BPNN) and a data consolidation method to generate a new version of the half-month 1/12∘ Global Inventory Modeling and Mapping Studies (GIMMS) LAI product, i.e., GIMMS LAI4g, for the period 1982–2020. The significance of the GIMMS LAI4g was the use of the latest PKU GIMMS normalized difference vegetation index (NDVI) product and 3.6 million high-quality global Landsat LAI samples to remove the effects of satellite orbital drift and sensor degradation and to develop spatiotemporally consistent BPNN models. The results showed that the GIMMS LAI4g exhibited overall higher accuracy and lower underestimation than its predecessor (GIMMS LAI3g) and two mainstream LAI products (Global LAnd Surface Satellite (GLASS) LAI and Long-term Global Mapping (GLOBMAP) LAI) using field LAI measurements and Landsat LAI samples. Its validation against Landsat LAI samples revealed an R2 of 0.96, root mean square error of 0.32 m2 m−2, mean absolute error of 0.16 m2 m−2, and mean absolute percentage error of 13.6 % which meets the accuracy target proposed by the Global Climate Observation System. It outperformed other LAI products for most vegetation biomes in a majority area of the land. It efficiently eliminated the effects of satellite orbital drift and sensor degradation and presented a better temporal consistency before and after the year 2000. The consolidation with the reprocessed MODIS LAI allows the GIMMS LAI4g to extend the temporal coverage from 2015 to a recent period (2020), producing the LAI trend that maintains high consistency before and after 2000 and aligns with the reprocessed MODIS LAI trend during the MODIS era. The GIMMS LAI4g product could potentially facilitate mitigating the disagreements between studies of the long-term global vegetation changes and could also benefit the model development in earth and environmental sciences. The GIMMS LAI4g product is open access and available under Attribution 4.0 International at https://doi.org/10.5281/zenodo.7649107 (Cao et al., 2023).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JamesPei应助木木采纳,获得10
1秒前
jane完成签到,获得积分10
2秒前
shendu发布了新的文献求助10
2秒前
aby发布了新的文献求助10
2秒前
可可派完成签到,获得积分10
3秒前
汤包完成签到 ,获得积分10
3秒前
3秒前
4秒前
科研通AI6应助蛋蛋采纳,获得10
4秒前
小豆包发布了新的文献求助10
5秒前
6秒前
早早完成签到,获得积分0
6秒前
hehe发布了新的文献求助10
6秒前
7秒前
CHSLN发布了新的文献求助10
7秒前
aby完成签到,获得积分10
8秒前
Annabelle完成签到,获得积分10
8秒前
CodeCraft应助前进四19采纳,获得10
9秒前
444完成签到,获得积分10
9秒前
Tan完成签到 ,获得积分10
9秒前
10秒前
共享精神应助shendu采纳,获得10
11秒前
外向访卉发布了新的文献求助10
11秒前
卤鸡腿应助SSS采纳,获得20
11秒前
我是老大应助铜绿微囊藻采纳,获得50
12秒前
14秒前
14秒前
ljf发布了新的文献求助10
15秒前
邓灯灯完成签到,获得积分20
15秒前
16秒前
17秒前
Hu发布了新的文献求助10
18秒前
18秒前
是个帅哥完成签到,获得积分10
19秒前
20秒前
科研通AI6应助一二一采纳,获得10
20秒前
20秒前
情怀应助灵泽采纳,获得10
21秒前
温柔的蛋挞完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994