EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media

计算机科学 卷积神经网络 人工智能 构造(python库) 集成学习 深度学习 代表(政治) 机器学习 自然语言处理 政治学 政治 程序设计语言 法学
作者
Esshaan Mahajan,Hema Mahajan,Sanjay Kumar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121228-121228
标识
DOI:10.1016/j.eswa.2023.121228
摘要

Nowadays, users across the globe interact with one another for information exchange, communication, and association on various online social media. However, some individuals exploit these venues for malicious practices like hate speech and cyberbully. In this paper, we present an improved multilingual hate speech and cyberbully detection model using bagging-stacking based hybrid ensemble deep learning techniques. The proposed model utilizes Bi-directional Long Short-Term Memory (BiLSTM), Bi-directional Gated Recurrent Unit (Bi-GRU), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) techniques to enhance the overall performance. We first preprocess the multilingual data streams followed by adoption of Global vectors for word Representation (GloVe) embeddings to convert words to a vector representation in parallel enabling the data streams for binary classification task. In order to construct an architecture for the detection of hate speech and cyberbully, we introduce a heterogeneous fusion of multiple effective models in a unique approach such that CNN-LSTM utilizes a stacking approach with stochastic gradient descent to achieve optimal weights, whereas all the base learners used bagging ensemble approach with cross-validation to reach optimal weights. The final output layer of the proposed ensemble deep learning architecture is achieved using a super learner approach on base learners. To show the efficacy of the proposed model, we conduct the simulation on a total of nine real-world social media datasets in different languages and compared the results with other contemporary hate speech and cyberbully detection methods. The collected findings show that the proposed model outperforms other models on considered datasets and shows an improvement of at least 4.44% in F1 scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huhuiya完成签到 ,获得积分10
1秒前
2秒前
li发布了新的文献求助10
3秒前
李爱国应助杨小鸿采纳,获得10
3秒前
6秒前
7秒前
天天快乐应助li采纳,获得10
8秒前
fafa发布了新的文献求助10
9秒前
10秒前
爱听歌的熊仔完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
w123发布了新的文献求助10
12秒前
打打应助Zyc采纳,获得10
13秒前
有本事1234完成签到,获得积分10
13秒前
haru完成签到,获得积分10
15秒前
15秒前
科研通AI6.1应助尊敬的采纳,获得10
16秒前
陈豆豆发布了新的文献求助10
16秒前
yang发布了新的文献求助10
17秒前
17秒前
JamesPei应助xutaiyu采纳,获得10
19秒前
20秒前
HWX完成签到 ,获得积分10
20秒前
LJQ发布了新的文献求助10
20秒前
Jessie完成签到,获得积分10
20秒前
w123完成签到,获得积分10
21秒前
Dream完成签到,获得积分0
22秒前
大模型应助陈豆豆采纳,获得10
22秒前
山井寿完成签到 ,获得积分10
22秒前
跳跳熊完成签到,获得积分10
22秒前
23秒前
研友_8KAzAn完成签到,获得积分10
23秒前
25秒前
Zyc发布了新的文献求助10
26秒前
乐观的穆关注了科研通微信公众号
26秒前
李木子完成签到 ,获得积分10
28秒前
wayne完成签到 ,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044