EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media

计算机科学 卷积神经网络 人工智能 构造(python库) 集成学习 深度学习 代表(政治) 机器学习 自然语言处理 政治 政治学 法学 程序设计语言
作者
Esshaan Mahajan,Hema Mahajan,Sanjay Kumar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121228-121228
标识
DOI:10.1016/j.eswa.2023.121228
摘要

Nowadays, users across the globe interact with one another for information exchange, communication, and association on various online social media. However, some individuals exploit these venues for malicious practices like hate speech and cyberbully. In this paper, we present an improved multilingual hate speech and cyberbully detection model using bagging-stacking based hybrid ensemble deep learning techniques. The proposed model utilizes Bi-directional Long Short-Term Memory (BiLSTM), Bi-directional Gated Recurrent Unit (Bi-GRU), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) techniques to enhance the overall performance. We first preprocess the multilingual data streams followed by adoption of Global vectors for word Representation (GloVe) embeddings to convert words to a vector representation in parallel enabling the data streams for binary classification task. In order to construct an architecture for the detection of hate speech and cyberbully, we introduce a heterogeneous fusion of multiple effective models in a unique approach such that CNN-LSTM utilizes a stacking approach with stochastic gradient descent to achieve optimal weights, whereas all the base learners used bagging ensemble approach with cross-validation to reach optimal weights. The final output layer of the proposed ensemble deep learning architecture is achieved using a super learner approach on base learners. To show the efficacy of the proposed model, we conduct the simulation on a total of nine real-world social media datasets in different languages and compared the results with other contemporary hate speech and cyberbully detection methods. The collected findings show that the proposed model outperforms other models on considered datasets and shows an improvement of at least 4.44% in F1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮咚关注了科研通微信公众号
1秒前
JamesPei应助大溺采纳,获得10
1秒前
1秒前
Rita发布了新的文献求助10
2秒前
2秒前
4秒前
ztt发布了新的文献求助10
5秒前
5秒前
HHHHTTTT发布了新的文献求助10
5秒前
5秒前
科研通AI5应助zhuzi采纳,获得10
6秒前
6秒前
6秒前
6秒前
bella发布了新的文献求助10
6秒前
JL完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
木木应助律齐采纳,获得10
9秒前
阿旭完成签到,获得积分10
10秒前
陆小凤发布了新的文献求助10
11秒前
11秒前
123发布了新的文献求助10
11秒前
哈尔婧完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
天天快乐应助bella采纳,获得10
15秒前
大溺发布了新的文献求助10
16秒前
17秒前
围炉夜话完成签到,获得积分10
17秒前
小马甲应助ztt采纳,获得10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
zz发布了新的文献求助20
20秒前
扬州应助科研通管家采纳,获得10
21秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126