EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media

计算机科学 卷积神经网络 人工智能 构造(python库) 集成学习 深度学习 代表(政治) 机器学习 自然语言处理 政治 政治学 法学 程序设计语言
作者
Esshaan Mahajan,Hema Mahajan,Sanjay Kumar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121228-121228
标识
DOI:10.1016/j.eswa.2023.121228
摘要

Nowadays, users across the globe interact with one another for information exchange, communication, and association on various online social media. However, some individuals exploit these venues for malicious practices like hate speech and cyberbully. In this paper, we present an improved multilingual hate speech and cyberbully detection model using bagging-stacking based hybrid ensemble deep learning techniques. The proposed model utilizes Bi-directional Long Short-Term Memory (BiLSTM), Bi-directional Gated Recurrent Unit (Bi-GRU), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) techniques to enhance the overall performance. We first preprocess the multilingual data streams followed by adoption of Global vectors for word Representation (GloVe) embeddings to convert words to a vector representation in parallel enabling the data streams for binary classification task. In order to construct an architecture for the detection of hate speech and cyberbully, we introduce a heterogeneous fusion of multiple effective models in a unique approach such that CNN-LSTM utilizes a stacking approach with stochastic gradient descent to achieve optimal weights, whereas all the base learners used bagging ensemble approach with cross-validation to reach optimal weights. The final output layer of the proposed ensemble deep learning architecture is achieved using a super learner approach on base learners. To show the efficacy of the proposed model, we conduct the simulation on a total of nine real-world social media datasets in different languages and compared the results with other contemporary hate speech and cyberbully detection methods. The collected findings show that the proposed model outperforms other models on considered datasets and shows an improvement of at least 4.44% in F1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱笑的大雁完成签到,获得积分10
刚刚
lychee完成签到,获得积分10
1秒前
1秒前
风趣的洙完成签到,获得积分10
3秒前
3秒前
JF123_发布了新的文献求助10
3秒前
累啊发布了新的文献求助10
3秒前
3秒前
4秒前
Akim应助潇洒的竹杖采纳,获得10
4秒前
yuqiWang发布了新的文献求助10
4秒前
5秒前
6秒前
飞快的羊青完成签到,获得积分10
6秒前
七田皿完成签到,获得积分10
7秒前
单纯白梦发布了新的文献求助10
7秒前
7秒前
Heidi完成签到,获得积分10
8秒前
獵戶座的參宿四完成签到,获得积分10
8秒前
zhaoying完成签到,获得积分10
8秒前
SciGPT应助忐忑的尔容采纳,获得10
9秒前
一五发布了新的文献求助10
9秒前
9秒前
谭金钰发布了新的文献求助10
9秒前
10秒前
悦耳玲完成签到 ,获得积分10
10秒前
啦啦啦完成签到,获得积分10
10秒前
10秒前
zy发布了新的文献求助10
11秒前
翁忘幽完成签到,获得积分10
11秒前
觉得太贵发布了新的文献求助10
11秒前
累啊完成签到,获得积分10
11秒前
12秒前
5476发布了新的文献求助10
12秒前
12秒前
12秒前
天天快乐应助何小抽采纳,获得10
13秒前
浮浮世世发布了新的文献求助10
13秒前
周粥舟完成签到,获得积分10
13秒前
Orange应助zorro3574采纳,获得10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340709
求助须知:如何正确求助?哪些是违规求助? 4477046
关于积分的说明 13933849
捐赠科研通 4372955
什么是DOI,文献DOI怎么找? 2402666
邀请新用户注册赠送积分活动 1395551
关于科研通互助平台的介绍 1367628