EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media

计算机科学 卷积神经网络 人工智能 构造(python库) 集成学习 深度学习 代表(政治) 机器学习 自然语言处理 政治 政治学 法学 程序设计语言
作者
Esshaan Mahajan,Hema Mahajan,Sanjay Kumar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121228-121228
标识
DOI:10.1016/j.eswa.2023.121228
摘要

Nowadays, users across the globe interact with one another for information exchange, communication, and association on various online social media. However, some individuals exploit these venues for malicious practices like hate speech and cyberbully. In this paper, we present an improved multilingual hate speech and cyberbully detection model using bagging-stacking based hybrid ensemble deep learning techniques. The proposed model utilizes Bi-directional Long Short-Term Memory (BiLSTM), Bi-directional Gated Recurrent Unit (Bi-GRU), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) techniques to enhance the overall performance. We first preprocess the multilingual data streams followed by adoption of Global vectors for word Representation (GloVe) embeddings to convert words to a vector representation in parallel enabling the data streams for binary classification task. In order to construct an architecture for the detection of hate speech and cyberbully, we introduce a heterogeneous fusion of multiple effective models in a unique approach such that CNN-LSTM utilizes a stacking approach with stochastic gradient descent to achieve optimal weights, whereas all the base learners used bagging ensemble approach with cross-validation to reach optimal weights. The final output layer of the proposed ensemble deep learning architecture is achieved using a super learner approach on base learners. To show the efficacy of the proposed model, we conduct the simulation on a total of nine real-world social media datasets in different languages and compared the results with other contemporary hate speech and cyberbully detection methods. The collected findings show that the proposed model outperforms other models on considered datasets and shows an improvement of at least 4.44% in F1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LjDyNZ完成签到,获得积分10
刚刚
JamesPei应助Zxxz采纳,获得10
刚刚
繁荣的夏岚完成签到 ,获得积分10
刚刚
feilu完成签到,获得积分10
刚刚
1秒前
1秒前
JamesPei应助吸尘器采纳,获得10
1秒前
老李完成签到,获得积分10
2秒前
周萌完成签到 ,获得积分10
2秒前
文静的雨筠完成签到 ,获得积分10
3秒前
小王同学完成签到,获得积分10
3秒前
3秒前
milan001发布了新的文献求助20
3秒前
3秒前
4秒前
调皮惜天完成签到,获得积分10
4秒前
循环完成签到,获得积分20
5秒前
5秒前
5秒前
三寿完成签到,获得积分10
5秒前
每天都要开心完成签到,获得积分10
5秒前
多多肉完成签到,获得积分10
6秒前
gomm完成签到,获得积分10
6秒前
也无风雨也无晴完成签到,获得积分10
6秒前
6秒前
Sophie完成签到,获得积分10
7秒前
糖醋可乐发布了新的文献求助10
7秒前
滴迪氐媂完成签到 ,获得积分10
7秒前
浮游应助aqiuyuehe采纳,获得10
7秒前
不劳而获完成签到 ,获得积分10
8秒前
金色稻谷完成签到,获得积分20
8秒前
feilei完成签到,获得积分10
8秒前
哈哈发布了新的文献求助10
8秒前
fuguier发布了新的文献求助10
8秒前
HMZ完成签到,获得积分10
8秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598108
求助须知:如何正确求助?哪些是违规求助? 4009392
关于积分的说明 12410910
捐赠科研通 3688745
什么是DOI,文献DOI怎么找? 2033396
邀请新用户注册赠送积分活动 1066690
科研通“疑难数据库(出版商)”最低求助积分说明 951763