EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media

计算机科学 卷积神经网络 人工智能 构造(python库) 集成学习 深度学习 代表(政治) 机器学习 自然语言处理 政治 政治学 法学 程序设计语言
作者
Esshaan Mahajan,Hema Mahajan,Sanjay Kumar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121228-121228
标识
DOI:10.1016/j.eswa.2023.121228
摘要

Nowadays, users across the globe interact with one another for information exchange, communication, and association on various online social media. However, some individuals exploit these venues for malicious practices like hate speech and cyberbully. In this paper, we present an improved multilingual hate speech and cyberbully detection model using bagging-stacking based hybrid ensemble deep learning techniques. The proposed model utilizes Bi-directional Long Short-Term Memory (BiLSTM), Bi-directional Gated Recurrent Unit (Bi-GRU), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) techniques to enhance the overall performance. We first preprocess the multilingual data streams followed by adoption of Global vectors for word Representation (GloVe) embeddings to convert words to a vector representation in parallel enabling the data streams for binary classification task. In order to construct an architecture for the detection of hate speech and cyberbully, we introduce a heterogeneous fusion of multiple effective models in a unique approach such that CNN-LSTM utilizes a stacking approach with stochastic gradient descent to achieve optimal weights, whereas all the base learners used bagging ensemble approach with cross-validation to reach optimal weights. The final output layer of the proposed ensemble deep learning architecture is achieved using a super learner approach on base learners. To show the efficacy of the proposed model, we conduct the simulation on a total of nine real-world social media datasets in different languages and compared the results with other contemporary hate speech and cyberbully detection methods. The collected findings show that the proposed model outperforms other models on considered datasets and shows an improvement of at least 4.44% in F1 scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助fff采纳,获得10
1秒前
1秒前
lzy完成签到,获得积分10
1秒前
2秒前
minisword完成签到,获得积分10
2秒前
3秒前
3秒前
xkk13完成签到,获得积分10
3秒前
4秒前
脑洞疼应助zp采纳,获得10
4秒前
5秒前
深情安青应助MYZ采纳,获得30
5秒前
5秒前
小巧灯泡发布了新的文献求助10
6秒前
SciGPT应助yy采纳,获得10
6秒前
lyymmm发布了新的文献求助10
7秒前
minisword发布了新的文献求助10
7秒前
领导范儿应助喜多采纳,获得10
7秒前
wzc发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助li采纳,获得10
9秒前
9秒前
张津浩发布了新的文献求助10
10秒前
bulubulubiu完成签到,获得积分10
11秒前
12秒前
zp完成签到,获得积分20
12秒前
12秒前
13秒前
丘比特应助迟未瑾采纳,获得10
14秒前
大模型应助沐沐采纳,获得10
14秒前
早安发布了新的文献求助10
14秒前
14秒前
南北发布了新的文献求助200
14秒前
15秒前
疯狂的胡萝卜完成签到,获得积分10
16秒前
17秒前
wxyshare应助不安采文采纳,获得10
17秒前
科目三应助烟雨落金城采纳,获得10
17秒前
闪闪的YOSH完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943128
求助须知:如何正确求助?哪些是违规求助? 4208384
关于积分的说明 13082612
捐赠科研通 3987733
什么是DOI,文献DOI怎么找? 2183262
邀请新用户注册赠送积分活动 1198889
关于科研通互助平台的介绍 1111368