EnsMulHateCyb: Multilingual hate speech and cyberbully detection in online social media

计算机科学 卷积神经网络 人工智能 构造(python库) 集成学习 深度学习 代表(政治) 机器学习 自然语言处理 政治学 政治 程序设计语言 法学
作者
Esshaan Mahajan,Hema Mahajan,Sanjay Kumar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121228-121228
标识
DOI:10.1016/j.eswa.2023.121228
摘要

Nowadays, users across the globe interact with one another for information exchange, communication, and association on various online social media. However, some individuals exploit these venues for malicious practices like hate speech and cyberbully. In this paper, we present an improved multilingual hate speech and cyberbully detection model using bagging-stacking based hybrid ensemble deep learning techniques. The proposed model utilizes Bi-directional Long Short-Term Memory (BiLSTM), Bi-directional Gated Recurrent Unit (Bi-GRU), Convolutional Neural Network (CNN), and Long Short-Term Memory (LSTM) techniques to enhance the overall performance. We first preprocess the multilingual data streams followed by adoption of Global vectors for word Representation (GloVe) embeddings to convert words to a vector representation in parallel enabling the data streams for binary classification task. In order to construct an architecture for the detection of hate speech and cyberbully, we introduce a heterogeneous fusion of multiple effective models in a unique approach such that CNN-LSTM utilizes a stacking approach with stochastic gradient descent to achieve optimal weights, whereas all the base learners used bagging ensemble approach with cross-validation to reach optimal weights. The final output layer of the proposed ensemble deep learning architecture is achieved using a super learner approach on base learners. To show the efficacy of the proposed model, we conduct the simulation on a total of nine real-world social media datasets in different languages and compared the results with other contemporary hate speech and cyberbully detection methods. The collected findings show that the proposed model outperforms other models on considered datasets and shows an improvement of at least 4.44% in F1 scores.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jkhjkhj发布了新的文献求助10
刚刚
4892完成签到,获得积分10
刚刚
Jingle完成签到 ,获得积分10
1秒前
赘婿应助min采纳,获得10
1秒前
jiangxiaoxu完成签到,获得积分10
1秒前
Li发布了新的文献求助10
1秒前
wuli发布了新的文献求助10
1秒前
默默的晓兰完成签到,获得积分20
1秒前
wuyu完成签到,获得积分10
2秒前
monlyly完成签到 ,获得积分10
2秒前
pwq发布了新的文献求助10
2秒前
2秒前
实验鱼完成签到,获得积分10
2秒前
星河完成签到,获得积分10
2秒前
3秒前
3秒前
kongchao008发布了新的文献求助10
3秒前
科研通AI6应助魔幻安筠采纳,获得10
3秒前
3秒前
CipherSage应助kyt采纳,获得10
3秒前
4秒前
hq发布了新的文献求助10
4秒前
结实寒梦完成签到 ,获得积分20
4秒前
YAN关闭了YAN文献求助
4秒前
小刺猬完成签到,获得积分10
5秒前
青青发布了新的文献求助20
5秒前
称心映梦完成签到 ,获得积分10
5秒前
yangyang发布了新的文献求助10
5秒前
自然从寒完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
ZMR121121发布了新的文献求助10
7秒前
尹辉完成签到,获得积分20
7秒前
追寻的凡柔完成签到,获得积分20
7秒前
sky完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645554
求助须知:如何正确求助?哪些是违规求助? 4769221
关于积分的说明 15030506
捐赠科研通 4804229
什么是DOI,文献DOI怎么找? 2568855
邀请新用户注册赠送积分活动 1526056
关于科研通互助平台的介绍 1485654