水准点(测量)
约束(计算机辅助设计)
数学优化
进化算法
计算机科学
最优化问题
面子(社会学概念)
约束优化问题
数学
社会科学
几何学
大地测量学
社会学
地理
作者
Yajie Zhang,Ye Tian,Hao Jiang,Xingyi Zhang,Yaochu Jin
标识
DOI:10.1016/j.ins.2023.119547
摘要
In recent years, solving constrained multiobjective optimization problems (CMOPs) by introducing simple helper problems has become a popular concept. To date, no systematic study has investigated the conditions under which this concept operates. In this study, we presented a holistic overview of existing constrained multiobjective evolutionary algorithms (CMOEAs) to address three research questions: (1) Why do we introduce helper problems? (2) Which problems should be selected as helper problems? and (3) How do helper problems help? Based on these discussions, we developed a novel helper-problem-assisted CMOEA, where the original CMOP was solved by addressing a series of constraint-centric problems derived from the original problem, with their constraint boundaries shrinking gradually. At each stage, we also had an objective-centric problem that was used to help solve the constraint-centric problem. In the experiments, we investigated the performance of the proposed algorithm on 66 benchmark problems and 15 real-world applications. The experimental results showed that the proposed algorithm is highly competitive compared with eight state-of-the-art CMOEAs.
科研通智能强力驱动
Strongly Powered by AbleSci AI