New damage evolution law in plastic damage models for fiber‐reinforced cementitious composites

材料科学 韧性 脆性 复合材料 消散 背景(考古学) 结构工程 可塑性 开裂 损伤容限 工程类 复合数 地质学 热力学 物理 古生物学
作者
Edmir José dos Santos Júnior,Pablo Augusto Krahl,Francisco Alex Correia Monteiro,Sérgio Gustavo Ferreira Cordeiro
出处
期刊:Structural Concrete [Wiley]
卷期号:25 (1): 440-455 被引量:1
标识
DOI:10.1002/suco.202300239
摘要

Abstract Nowadays, fiber‐reinforced cement‐based composites (FRCC) can develop ductile behavior with high toughness when the matrix, fibers, and interface are optimally designed. These materials are promising solutions for constructing more resilient structures. In this context, the widespread use in large‐scale applications requires reliable models to predict the performance of FRCC structures. Usually, the studies on numerical modeling of FRCC apply the damage laws developed for quasi‐brittle concrete, making damage increase faster than really occurs in the presence of fibers. Therefore, the present paper proposes a new damage evolution model for FRCC based on energy dissipation concepts. It is assumed that the dissipated energy contributes fully to the evolution of the scalar damage and plastic strain variables, which is a technical advance from the previous works. The damage evolution is obtained with experimental envelopes of uniaxial stress–strain tests and the focal point from loading–unloading cycles. The results showed that the model accurately predicted experimental results using the damage‐plasticity framework. Furthermore, there are no empirical constants in the proposal, which means that it can be applied to any class of FRCC. An application regarding damage evaluation near a load transfer device in jointed plain cementitious pavements is presented. The damage distribution reveals that using FRCC materials has induced smaller damage values when compared with using conventional concrete. Consequently, cracking is reduced in such zones, increasing the structural life of the pavement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jonas完成签到,获得积分10
刚刚
科研通AI2S应助一个刚刚采纳,获得10
刚刚
寻上完成签到,获得积分10
刚刚
bacibobo完成签到,获得积分10
1秒前
1秒前
可以的发布了新的文献求助10
2秒前
俏皮的惜灵给俏皮的惜灵的求助进行了留言
3秒前
ken131发布了新的文献求助10
4秒前
as9988776654完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
7秒前
月月完成签到,获得积分10
8秒前
8秒前
爆米花应助MOTOMORI采纳,获得10
9秒前
找找完成签到,获得积分10
9秒前
小熊饼干完成签到,获得积分10
9秒前
洪七公完成签到,获得积分20
10秒前
东风压倒西风完成签到,获得积分10
10秒前
10秒前
11秒前
共享精神应助科研小黑采纳,获得10
11秒前
xu发布了新的文献求助10
11秒前
11秒前
多情方盒完成签到,获得积分10
11秒前
找找发布了新的文献求助10
11秒前
12秒前
13秒前
13秒前
weinaonao发布了新的文献求助10
13秒前
愤怒的qiang应助Nara2021采纳,获得10
13秒前
斯文棒球完成签到 ,获得积分10
13秒前
13秒前
李健的小迷弟应助1234采纳,获得10
14秒前
丘比特应助艾云欣采纳,获得10
14秒前
14秒前
华仔应助洪七公采纳,获得30
15秒前
爱笑以松发布了新的文献求助10
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735149
求助须知:如何正确求助?哪些是违规求助? 3279042
关于积分的说明 10012684
捐赠科研通 2995593
什么是DOI,文献DOI怎么找? 1643547
邀请新用户注册赠送积分活动 781324
科研通“疑难数据库(出版商)”最低求助积分说明 749369