Prognostic role of radiomics‐based body composition analysis for the 1‐year survival for hepatocellular carcinoma patients

索拉非尼 肝细胞癌 医学 队列 内科学 置信区间 肿瘤科 无线电技术 特征(语言学) 特征选择 放射科 人工智能 计算机科学 语言学 哲学
作者
Sylvia Saalfeld,Robert Kreher,Georg Hille,Uli Niemann,Mattes Hinnerichs,Osman Öcal,Kerstin Schütte,Christoph J. Zech,Christian Loewe,Otto van Delden,Vincent Vandecaveye,Chris Verslype,Bernhard Gebauer,Christian Sengel,Irene Bargellini,Roberto Iezzi,Thomas Berg,Heinz‐Josef Klümpen,Julia Benckert,Antonio Gasbarrini,Holger Amthauer,Bruno Sangro,Peter Malfertheiner,Bernhard Preim,Jens Ricke,Max Seidensticker,Maciej Pech,Alexey Surov
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:14 (5): 2301-2309 被引量:12
标识
DOI:10.1002/jcsm.13315
摘要

Parameters of body composition have prognostic potential in patients with oncologic diseases. The aim of the present study was to analyse the prognostic potential of radiomics-based parameters of the skeletal musculature and adipose tissues in patients with advanced hepatocellular carcinoma (HCC).Radiomics features were extracted from a cohort of 297 HCC patients as post hoc sub-study of the SORAMIC randomized controlled trial. Patients were treated with selective internal radiation therapy (SIRT) in combination with sorafenib or with sorafenib alone yielding two groups: (1) sorafenib monotherapy (n = 147) and (2) sorafenib and SIRT (n = 150). The main outcome was 1-year survival. Segmentation of muscle tissue and adipose tissue was used to retrieve 881 features. Correlation analysis and feature cleansing yielded 292 features for each patient group and each tissue type. We combined 9 feature selection methods with 10 feature set compositions to build 90 feature sets. We used 11 classifiers to build 990 models. We subdivided the patient groups into a train and validation cohort and a test cohort, that is, one third of the patient groups.We used the train and validation set to identify the best feature selection and classification model and applied it to the test set for each patient group. Classification yields for patients who underwent sorafenib monotherapy an accuracy of 75.51% and area under the curve (AUC) of 0.7576 (95% confidence interval [CI]: 0.6376-0.8776). For patients who underwent treatment with SIRT and sorafenib, results are accuracy = 78.00% and AUC = 0.8032 (95% CI: 0.6930-0.9134).Parameters of radiomics-based analysis of the skeletal musculature and adipose tissue predict 1-year survival in patients with advanced HCC. The prognostic value of radiomics-based parameters was higher in patients who were treated with SIRT and sorafenib.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
温暖芷文完成签到,获得积分10
4秒前
酷炫小伙完成签到,获得积分10
7秒前
西溪完成签到 ,获得积分10
8秒前
10秒前
700w完成签到 ,获得积分0
10秒前
Lau完成签到,获得积分10
12秒前
14秒前
1245发布了新的文献求助10
14秒前
18秒前
科研通AI2S应助飞快的香菱采纳,获得10
18秒前
月儿完成签到,获得积分10
20秒前
insissst发布了新的文献求助10
21秒前
23秒前
24秒前
月儿发布了新的文献求助10
24秒前
深情的安柏完成签到,获得积分10
24秒前
clineli完成签到,获得积分10
27秒前
研友_Z7Xdl8发布了新的文献求助10
29秒前
Eva发布了新的文献求助10
29秒前
胖达发布了新的文献求助10
30秒前
1245发布了新的文献求助10
32秒前
Condish完成签到,获得积分10
35秒前
伊可完成签到 ,获得积分10
37秒前
CodeCraft应助insissst采纳,获得10
38秒前
Jasper应助怕黑乐蕊采纳,获得10
39秒前
暮尘尘完成签到,获得积分10
40秒前
无情冥王星完成签到,获得积分10
41秒前
FashionBoy应助愉快的盼曼采纳,获得10
44秒前
45秒前
46秒前
Condish发布了新的文献求助10
46秒前
打打应助asdadadad采纳,获得10
47秒前
兑润泽完成签到,获得积分10
47秒前
47秒前
Yifan2024应助清新的万天采纳,获得200
48秒前
大模型应助vvv采纳,获得10
48秒前
48秒前
TongMan完成签到,获得积分20
48秒前
49秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387466
求助须知:如何正确求助?哪些是违规求助? 3000207
关于积分的说明 8789936
捐赠科研通 2686116
什么是DOI,文献DOI怎么找? 1471475
科研通“疑难数据库(出版商)”最低求助积分说明 680302
邀请新用户注册赠送积分活动 673072