光敏剂
化学
光动力疗法
单线态氧
光化学
活性氧
吡啶
牛血清白蛋白
羟基自由基
阳离子聚合
激进的
组合化学
有机化学
氧气
生物化学
作者
Yulu Li,Di Zhang,Yuewen Yu,Le Zhang,Ling Li,Leilei Shi,Guangxue Feng,Ben Zhong Tang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-08-22
卷期号:17 (17): 16993-17003
被引量:26
标识
DOI:10.1021/acsnano.3c04256
摘要
Effective photodynamic therapy (PDT) requires photosensitizers (PSs) to massively generate type I reactive oxygen species (ROS) in a less oxygen-dependent manner in the hypoxia tumor microenvironment. Herein, we present a cascade strategy to boost type I ROS, especially hydroxyl radical (OH·-), generation with an aggregation-induced emission (AIE) photosensitizer-albumin complex for hypoxia-tolerant PDT. The cationic AIE PS TPAQ-Py-PF6 (TPA = triphenylamine, Q = anthraquinone, Py = pyridine) contains three important moieties to cooperatively enhance free radical generation: the AIE-active TPA unit ensures the effective triplet exciton generation in aggregate, the anthraquinone moiety possesses the redox cycling ability to promote electron transfer, while the cationic methylpyridinium cation further increases intramolecular charge transfer and electron separation processes. Inserting the cationic TPAQ-Py-PF6 into the hydrophobic domain of bovine serum albumin nanoparticles (BSA NPs) could greatly immobilize its molecular geometry to further increase triplet exciton generation, while the electron-rich microenvironment of BSA ultimately leads to OH·- generation. Both experimental and theoretical results confirm the effectiveness of our molecular cationization and BSA immobilization cascade strategy for enhancing OH·- generation. In vitro and in vivo experiments validate the excellent antitumor PDT performance of BSA NPs, superior to the conventional polymeric encapsulation approach. Such a multidimensional cascade strategy for specially boosting OH·- generation shall hold great potential in hypoxia-tolerant PDT and related antitumor applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI