An Offset Graph U-Net for Hyperspectral Image Classification

高光谱成像 判别式 计算机科学 图形 模式识别(心理学) 人工智能 联营 偏移量(计算机科学) 理论计算机科学 程序设计语言
作者
Rong Chen,Gemine Vivone,Guanghui Li,Chenglong Dai,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3307609
摘要

Graph convolutional network (GCN) has recently received increasing attention in hyperspectral image (HSI) classification, benefiting from its superiority in conducting shape adaptive convolutions on arbitrary non-Euclidean structure data. However, the performance of GCN heavily depends on the quality of the initial graph. Conventional GCN-based methods only adopt spectral-spatial similarity to build the initial graph without extracting other contextual information from neighboring nodes. In addition, most GCN-based methods use shallow layers, which cannot extract deep discriminative features from HSIs under the limited number of training samples. To solve these issues, we propose a superpixel feature learning via offset graph U-Net for HSI classification, which can learn deep discriminative features from HSIs. Multiple strategies of measuring similarity among superpixels are utilized to build the initial graph, including spectral information, spatial information and context-aware information among nodes, making the initial graph more accurate. Furthermore, the graph U-Net structure, containing the graph pooling layer and the graph unpooling layer, is helpful in constructing deep GCN layers and learning multi-scale features, which can alleviate the oversmoothing problem. Moreover, an offset module is introduced to emphasize the local spectral-spatial information. Finally, we comprehensively evaluate the proposed method on three public data sets. The experimental results demonstrate the superiority of the proposed approach compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助三个句号采纳,获得10
刚刚
大模型应助stargazer采纳,获得10
1秒前
美丽的巨兔完成签到,获得积分10
2秒前
3秒前
脑洞疼应助临风采纳,获得10
4秒前
5秒前
CMM完成签到,获得积分20
6秒前
三个句号完成签到,获得积分20
6秒前
7秒前
7秒前
CZR发布了新的文献求助10
9秒前
9秒前
嘿嘿发布了新的文献求助30
10秒前
mukji完成签到,获得积分10
11秒前
bkagyin应助不再方里采纳,获得10
11秒前
Sherlo完成签到,获得积分10
11秒前
12秒前
冉小维发布了新的文献求助50
14秒前
14秒前
Lucas应助qinsi15采纳,获得10
14秒前
Jasper应助xiongdi521采纳,获得10
14秒前
CMM发布了新的文献求助10
17秒前
17秒前
林洁佳完成签到,获得积分10
17秒前
在水一方应助可靠的寒风采纳,获得10
17秒前
stargazer发布了新的文献求助10
18秒前
18秒前
着急的清完成签到,获得积分10
20秒前
小yi又困啦完成签到 ,获得积分10
20秒前
落后寒云发布了新的文献求助10
21秒前
林洁佳发布了新的文献求助10
21秒前
官方电话完成签到,获得积分10
23秒前
xiongdi521发布了新的文献求助10
23秒前
23秒前
激动的访文完成签到,获得积分10
24秒前
NexusExplorer应助stick采纳,获得10
25秒前
26秒前
量子星尘发布了新的文献求助10
26秒前
恋恋发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906958
求助须知:如何正确求助?哪些是违规求助? 4184247
关于积分的说明 12993374
捐赠科研通 3950583
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185172
关于科研通互助平台的介绍 1091461