An Offset Graph U-Net for Hyperspectral Image Classification

高光谱成像 判别式 计算机科学 图形 模式识别(心理学) 人工智能 联营 偏移量(计算机科学) 理论计算机科学 程序设计语言
作者
Rong Chen,Gemine Vivone,Guanghui Li,Chenglong Dai,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3307609
摘要

Graph convolutional network (GCN) has recently received increasing attention in hyperspectral image (HSI) classification, benefiting from its superiority in conducting shape adaptive convolutions on arbitrary non-Euclidean structure data. However, the performance of GCN heavily depends on the quality of the initial graph. Conventional GCN-based methods only adopt spectral-spatial similarity to build the initial graph without extracting other contextual information from neighboring nodes. In addition, most GCN-based methods use shallow layers, which cannot extract deep discriminative features from HSIs under the limited number of training samples. To solve these issues, we propose a superpixel feature learning via offset graph U-Net for HSI classification, which can learn deep discriminative features from HSIs. Multiple strategies of measuring similarity among superpixels are utilized to build the initial graph, including spectral information, spatial information and context-aware information among nodes, making the initial graph more accurate. Furthermore, the graph U-Net structure, containing the graph pooling layer and the graph unpooling layer, is helpful in constructing deep GCN layers and learning multi-scale features, which can alleviate the oversmoothing problem. Moreover, an offset module is introduced to emphasize the local spectral-spatial information. Finally, we comprehensively evaluate the proposed method on three public data sets. The experimental results demonstrate the superiority of the proposed approach compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
街上的纸屑完成签到 ,获得积分20
1秒前
1秒前
英姑应助机灵白桃采纳,获得30
2秒前
2秒前
略略略完成签到,获得积分10
2秒前
3秒前
预知子发布了新的文献求助10
3秒前
Bio应助研途者采纳,获得50
4秒前
Hello应助坚强慕蕊采纳,获得10
5秒前
饼饼发布了新的文献求助10
5秒前
plant发布了新的文献求助10
7秒前
Shilly发布了新的文献求助10
8秒前
8秒前
liu123完成签到,获得积分10
9秒前
闫富扬完成签到,获得积分20
10秒前
哒哒李完成签到,获得积分10
11秒前
xyb发布了新的文献求助10
11秒前
传奇3应助饼饼采纳,获得10
14秒前
15秒前
16秒前
16秒前
坚强慕蕊发布了新的文献求助10
19秒前
小康发布了新的文献求助10
20秒前
20秒前
Bio应助青云客采纳,获得50
21秒前
陈陈完成签到,获得积分10
22秒前
fengwx完成签到,获得积分10
22秒前
25秒前
小宋同学应助小康采纳,获得10
27秒前
领导范儿应助张雨兴采纳,获得10
29秒前
锌迹完成签到,获得积分20
29秒前
田様应助Deanna采纳,获得10
29秒前
31秒前
锌迹发布了新的文献求助10
32秒前
Cmiudz完成签到,获得积分10
36秒前
38秒前
38秒前
40秒前
40秒前
英俊的铭应助欣慰的剑鬼采纳,获得10
41秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979693
求助须知:如何正确求助?哪些是违规求助? 3523666
关于积分的说明 11218291
捐赠科研通 3261174
什么是DOI,文献DOI怎么找? 1800485
邀请新用户注册赠送积分活动 879103
科研通“疑难数据库(出版商)”最低求助积分说明 807167