An Offset Graph U-Net for Hyperspectral Image Classification

高光谱成像 判别式 计算机科学 图形 模式识别(心理学) 人工智能 联营 偏移量(计算机科学) 理论计算机科学 程序设计语言
作者
Rong Chen,Gemine Vivone,Guanghui Li,Chenglong Dai,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3307609
摘要

Graph convolutional network (GCN) has recently received increasing attention in hyperspectral image (HSI) classification, benefiting from its superiority in conducting shape adaptive convolutions on arbitrary non-Euclidean structure data. However, the performance of GCN heavily depends on the quality of the initial graph. Conventional GCN-based methods only adopt spectral-spatial similarity to build the initial graph without extracting other contextual information from neighboring nodes. In addition, most GCN-based methods use shallow layers, which cannot extract deep discriminative features from HSIs under the limited number of training samples. To solve these issues, we propose a superpixel feature learning via offset graph U-Net for HSI classification, which can learn deep discriminative features from HSIs. Multiple strategies of measuring similarity among superpixels are utilized to build the initial graph, including spectral information, spatial information and context-aware information among nodes, making the initial graph more accurate. Furthermore, the graph U-Net structure, containing the graph pooling layer and the graph unpooling layer, is helpful in constructing deep GCN layers and learning multi-scale features, which can alleviate the oversmoothing problem. Moreover, an offset module is introduced to emphasize the local spectral-spatial information. Finally, we comprehensively evaluate the proposed method on three public data sets. The experimental results demonstrate the superiority of the proposed approach compared with other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WittingGU完成签到,获得积分0
2秒前
魔山西红柿完成签到,获得积分10
4秒前
4秒前
5秒前
xide发布了新的文献求助10
5秒前
汉堡包应助佳丽采纳,获得10
6秒前
躺平摆烂小饼干完成签到,获得积分10
7秒前
共享精神应助追寻笑寒采纳,获得30
8秒前
9秒前
科研通AI2S应助volvoamg采纳,获得10
9秒前
9秒前
10秒前
11秒前
13秒前
14秒前
zzyl完成签到,获得积分10
16秒前
...完成签到,获得积分10
17秒前
17秒前
okjiujiu完成签到,获得积分0
17秒前
大火炉发布了新的文献求助10
18秒前
Jarvis完成签到,获得积分10
18秒前
18秒前
真1发布了新的文献求助10
19秒前
大模型应助快乐的安珊采纳,获得10
19秒前
21秒前
搜集达人应助蘇q采纳,获得10
21秒前
22秒前
22秒前
Hello应助啊唔采纳,获得10
23秒前
23秒前
pengchen完成签到,获得积分10
23秒前
24秒前
科研菜鸟完成签到,获得积分10
24秒前
斯文问丝完成签到 ,获得积分10
25秒前
万能图书馆应助左辄采纳,获得10
25秒前
WMT完成签到 ,获得积分10
27秒前
czz发布了新的文献求助10
27秒前
乐观青柏完成签到,获得积分10
28秒前
追寻笑寒发布了新的文献求助30
28秒前
不知名网友要某某完成签到,获得积分10
28秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161216
求助须知:如何正确求助?哪些是违规求助? 2812642
关于积分的说明 7895839
捐赠科研通 2471437
什么是DOI,文献DOI怎么找? 1316030
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112