An Offset Graph U-Net for Hyperspectral Image Classification

高光谱成像 判别式 计算机科学 图形 模式识别(心理学) 人工智能 联营 偏移量(计算机科学) 理论计算机科学 程序设计语言
作者
Rong Chen,Gemine Vivone,Guanghui Li,Chenglong Dai,Jocelyn Chanussot
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3307609
摘要

Graph convolutional network (GCN) has recently received increasing attention in hyperspectral image (HSI) classification, benefiting from its superiority in conducting shape adaptive convolutions on arbitrary non-Euclidean structure data. However, the performance of GCN heavily depends on the quality of the initial graph. Conventional GCN-based methods only adopt spectral-spatial similarity to build the initial graph without extracting other contextual information from neighboring nodes. In addition, most GCN-based methods use shallow layers, which cannot extract deep discriminative features from HSIs under the limited number of training samples. To solve these issues, we propose a superpixel feature learning via offset graph U-Net for HSI classification, which can learn deep discriminative features from HSIs. Multiple strategies of measuring similarity among superpixels are utilized to build the initial graph, including spectral information, spatial information and context-aware information among nodes, making the initial graph more accurate. Furthermore, the graph U-Net structure, containing the graph pooling layer and the graph unpooling layer, is helpful in constructing deep GCN layers and learning multi-scale features, which can alleviate the oversmoothing problem. Moreover, an offset module is introduced to emphasize the local spectral-spatial information. Finally, we comprehensively evaluate the proposed method on three public data sets. The experimental results demonstrate the superiority of the proposed approach compared with other state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利的琳发布了新的文献求助10
刚刚
1秒前
1秒前
nuonuoweng完成签到,获得积分10
1秒前
BOMB发布了新的文献求助30
2秒前
苗条世德完成签到,获得积分10
2秒前
2秒前
2秒前
Maize Man完成签到,获得积分10
2秒前
单纯寒凝发布了新的文献求助10
4秒前
4秒前
Ava应助称心凡霜采纳,获得10
5秒前
快乐小瑶发布了新的文献求助10
5秒前
5秒前
英俊的铭应助sxmt123456789采纳,获得30
6秒前
搜集达人应助伶俐的夜梦采纳,获得50
6秒前
煤炭不甜完成签到,获得积分10
6秒前
8秒前
万能图书馆应助矜持采纳,获得10
8秒前
kekehuang关注了科研通微信公众号
8秒前
8秒前
霸气若男发布了新的文献求助10
9秒前
孙嘉畯发布了新的文献求助10
9秒前
lbchanger完成签到 ,获得积分10
9秒前
Lisianthus发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
YE完成签到 ,获得积分10
10秒前
领导范儿应助下北沢采纳,获得10
11秒前
gaoww发布了新的文献求助10
11秒前
精明凡雁完成签到,获得积分10
11秒前
我是第一名完成签到,获得积分10
11秒前
11秒前
12秒前
宛雷雅发布了新的文献求助30
13秒前
冷风发布了新的文献求助10
13秒前
多多发布了新的文献求助10
13秒前
13秒前
14秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610713
求助须知:如何正确求助?哪些是违规求助? 4695216
关于积分的说明 14885929
捐赠科研通 4723170
什么是DOI,文献DOI怎么找? 2545217
邀请新用户注册赠送积分活动 1509998
关于科研通互助平台的介绍 1473110