Recognition and Evaluation of Stability Movements in Gymnastics Based on Deep Learning

计算机科学 领域(数学) 集合(抽象数据类型) 过程(计算) 人工智能 理论(学习稳定性) 卷积神经网络 互联网 人工神经网络 运动(音乐) 动作(物理) 机器学习 多媒体 人机交互 计算机视觉 万维网 数学 哲学 物理 美学 量子力学 纯数学 程序设计语言 操作系统
作者
Ahmed Saadi Abdullah,Khalil I. Alsaif
标识
DOI:10.1109/aiccit57614.2023.10218071
摘要

Research in the field of computer vision is currently an active and developing area. The evolution of technology and the increasing capabilities of computing and artificial neural networks are factors that have contributed to the advancement of this field. Computer vision systems are relied upon in many fields at present, such as the sports, agricultural, and medical fields, which gave excellent results in all areas on which these systems relied. This article presents the method of relying on computer vision systems in the sports field by distinguishing and evaluating the movements of the male gymnastics player on the ring apparatus, the evaluation process by the referees is complex, and the angle of view of the referee must be clear to ensure the assessment is correct, as the movements are distinguished. Stability in the fixed ring game in gymnastics, a data set was created to distinguish the activities and to evaluate the accuracy of their performance due to the lack of a data set available on the Internet, knowing that these movements are only for men’s gymnastics. One of the convolutional neural network models (yolov7) was adopted after dividing the data into 80% for training and the rest for testing. A set of points on the body based on which the type of movement is known, in addition to the player’s accuracy in executing the action. The time it takes for the player to perform this movement has also been calculated. This system has also been applied to a set of video clips to evaluate player movement. Adopting it to train some players to implement the actions well, the implementation results were very high, as the accuracy reached 95%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coffee发布了新的文献求助10
1秒前
1秒前
科研混子发布了新的文献求助10
1秒前
咿咿呀呀发布了新的文献求助10
1秒前
酷酷碧发布了新的文献求助10
3秒前
飘逸宛丝完成签到,获得积分10
4秒前
qzaima发布了新的文献求助10
4秒前
米酒完成签到,获得积分10
6秒前
step_stone给step_stone的求助进行了留言
6秒前
乐乐应助ayin采纳,获得10
7秒前
无花果应助hhh采纳,获得10
9秒前
叁壹粑粑完成签到,获得积分10
10秒前
酷酷碧完成签到,获得积分10
10秒前
11秒前
磕盐民工完成签到,获得积分10
12秒前
12秒前
忘羡222发布了新的文献求助20
12秒前
我是老大应助TT采纳,获得10
14秒前
14秒前
14秒前
雪鸽鸽完成签到,获得积分10
15秒前
完美世界应助开心青旋采纳,获得10
15秒前
LD完成签到 ,获得积分10
17秒前
xjy完成签到 ,获得积分10
17秒前
qzaima完成签到,获得积分10
17秒前
18秒前
xueshufengbujue完成签到,获得积分10
18秒前
楼寒天发布了新的文献求助10
18秒前
19秒前
科研通AI5应助111111111采纳,获得10
20秒前
20秒前
sunsunsun完成签到,获得积分10
20秒前
哎嘤斯坦完成签到,获得积分10
22秒前
22秒前
sweetbearm应助潦草采纳,获得10
23秒前
sunsunsun发布了新的文献求助10
23秒前
酷波er应助Mars采纳,获得10
24秒前
迪士尼在逃后母完成签到,获得积分10
24秒前
24秒前
我是老大应助su采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824