清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MIUIC: A Human-Computer Collaborative Multimodal Intention-Understanding Algorithm Incorporating Comfort Analysis

计算机科学 自然性 算法 机器人 人机交互 人工智能 机器学习 量子力学 物理
作者
Liran Zhou,Zhiquan Feng,Hongyue Wang,Qingbei Guo
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-14
标识
DOI:10.1080/10447318.2023.2247606
摘要

AbstractThe naturalness and safety of human-computer interaction have always been primary research focuses in the field of human-computer interaction. This paper proposes a multimodal intention understanding algorithm (MIUIC), which incorporates comfort analysis, as a solution to address the issues of low intention understanding rate, weak interaction, and weak collaboration that are often observed in most massage systems. The algorithm efficiently fuses multimodal data based on objective implicit information to address the challenge of low intention understanding rates caused by non-standard expression of natural behavior. Moreover, this algorithm incorporates comfort reasoning to detect and address intentions related to security threats while providing the ability for robots to make behavioral decisions through inverse active interaction, leading to more equitable human-robot interactions. To test the validity and safety of the MIUIC algorithm, we embedded the algorithm into a mechanical arm massage system. Subsequently, 45 elderly volunteers were invited to participate in experimental tests. Finally, to verify the validity and safety of the MIUIC algorithm, we assessed the algorithm in terms of four aspects, including multimodal intention recognition rate, the ability to reduce data dispersion, the intention enhancement rate under reverse human-machine interaction, and the rate of avoiding dangerous intentions. In conclusion, the MIUIC algorithm enhances the intention understanding rate and promotes.Keywords: Human-computer collaborationnature human-computer interactionintention understandingmultimodal fusion Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis paper is supported by the Independent Innovation Team Project of Jinan City [No. 2019GXRC013].Notes on contributorsLiran ZhouLiran Zhou is a graduate student at the Department of Computer Science and Technology, University of Jinan. Her research interests lie in human-computer interaction and collaboration in elderly care.Zhiquan FengZhiquan Feng is a professor of Computer Science and Technology at University of Jinan. His work explores human-machine interaction and collaboration issues in topics such as smart education, elderly robots, and robotic arms.Hongyue WangHongyue Wang is a graduate student at the Department of Computer Science and Technology, University of Jinan. His research interests lie in human-computer interaction, virtual reality and artificial intelligence research in smart education.Qingbei GuoQingbei Guo is an associate professor of Computer Science and Technology at University of Jinan. His research at intersection of pat tern recognition and computer vision focuses especially on human computer collaboration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
7秒前
yuehan完成签到 ,获得积分10
7秒前
郜南烟发布了新的文献求助10
13秒前
CY发布了新的文献求助10
17秒前
彭于晏应助郜南烟采纳,获得10
18秒前
lovexa完成签到,获得积分10
40秒前
zyjsunye完成签到 ,获得积分0
43秒前
digger2023完成签到 ,获得积分10
55秒前
迪西完成签到 ,获得积分10
1分钟前
无悔完成签到 ,获得积分10
1分钟前
jesusmanu完成签到,获得积分0
1分钟前
SciGPT应助郜南烟采纳,获得10
1分钟前
1分钟前
郜南烟发布了新的文献求助10
1分钟前
creep2020完成签到,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
firewood完成签到 ,获得积分10
2分钟前
善学以致用应助郜南烟采纳,获得10
3分钟前
3分钟前
郜南烟发布了新的文献求助10
3分钟前
追寻奇迹完成签到 ,获得积分10
3分钟前
小强完成签到 ,获得积分10
3分钟前
梅啦啦完成签到 ,获得积分10
4分钟前
minuxSCI完成签到,获得积分10
4分钟前
zhangguo完成签到 ,获得积分10
4分钟前
受伤的薯片完成签到 ,获得积分10
5分钟前
5分钟前
lamborghini193完成签到,获得积分10
5分钟前
6分钟前
郜南烟发布了新的文献求助10
6分钟前
华仔应助郜南烟采纳,获得10
6分钟前
莎莎完成签到 ,获得积分10
6分钟前
scenery0510完成签到,获得积分10
6分钟前
yi完成签到 ,获得积分10
7分钟前
7分钟前
zxt完成签到,获得积分10
7分钟前
郜南烟发布了新的文献求助10
7分钟前
ww完成签到,获得积分10
7分钟前
飞龙在天完成签到,获得积分10
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146783
求助须知:如何正确求助?哪些是违规求助? 2798063
关于积分的说明 7826678
捐赠科研通 2454607
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627723
版权声明 601527