Theoretical study and experimental verification of the DMPBP[5] adsorption-enhanced Bi2WO6 photocatalysis Fe3O4 self-Fenton system

吸附 光催化 光降解 催化作用 污染物 化学 化学工程 材料科学 物理化学 有机化学 工程类
作者
Yalan Zhang,Xun Jia,Guizhou Xu,Wei Liu,Du Hu,Qianqian Sun,Jinying Xu,Guihai Zhang,Wenrong Xiong,Zhifei Ma,Yongdong Zhang,Jianjun Dai,Huike zhou,Daishe Wu,Xianchuan Xie
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:327: 124916-124916 被引量:8
标识
DOI:10.1016/j.seppur.2023.124916
摘要

In this study, a DMP5 polymer (DMPBP[5]) adsorption enhanced Bi2WO6 (BWO) photocatalysis Fe3O4 self-Fenton system (DMPBP[5]-BWO-Fe3O4) was proposed. The system includes the adsorption of pollutants and active substances by DMPBP[5] as the prerequisite and driving force for the reaction, a Bi-based photocatalyst as an in situ robust H2O2 generator, and decorated Fe3O4 (Fe2+/Fe3+) as the trigger and enhancer for H2O2 formation and transformation, which leads to a highly efficient and stable activity for persistent organic pollutants. Considering the photo-oxidation of RhB as a model reaction, this system exhibits 17–18 times higher photodegradation rate than that of the original BWO, which corresponds to a high catalytic activity of 98.3% (k = 14.2 × 10-3 min−1) within 180 min. The advantages of the system are mainly attributed to: (1) DMPBP[5] has a large specific surface area (1386 m2/g), which provides more adsorption sites for pollutants; (2) Further, through theoretical calculation, we found that the super-strong adsorption capacity of DMPBP[5] for RhB (−0.061 eV) was much higher than that of Fe3O4 (−0.0025 eV) and BWO (−0.0015 eV); (3) The production of H2O2 on DMPBP[5]-BWO-Fe3O4 is greatly increased, and the concentration of H2O2 can be accumulated to 5.506 μM within 120 min, which is about 90.3 times and 9.25 times higher than that of BWO and BWO-D7, respectively. The system presented here provides new insights into the efficient and environmentally friendly removal of refractory organic contaminants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希希发布了新的文献求助10
刚刚
从容的钢铁侠完成签到,获得积分20
2秒前
在水一方应助lijiauyi1994采纳,获得10
2秒前
多多发SCI发布了新的文献求助30
2秒前
量子星尘发布了新的文献求助10
3秒前
小小发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
英姑应助vsbsjj采纳,获得10
6秒前
chong0919完成签到,获得积分10
6秒前
memo应助默默的巧蕊采纳,获得10
7秒前
9秒前
11秒前
端庄的友瑶完成签到,获得积分10
12秒前
14秒前
十二完成签到,获得积分10
15秒前
15秒前
15秒前
闪999发布了新的文献求助10
15秒前
貔貅完成签到,获得积分10
16秒前
orixero应助杜客采纳,获得10
19秒前
19秒前
旗树树发布了新的文献求助10
19秒前
mmmaosheng完成签到,获得积分10
19秒前
xxfsx应助田猛采纳,获得10
19秒前
yegechuanqi发布了新的文献求助10
20秒前
闪999完成签到,获得积分10
21秒前
21秒前
21秒前
23秒前
scxl2000完成签到,获得积分10
24秒前
25秒前
25秒前
思垢发布了新的文献求助10
27秒前
27秒前
sss发布了新的文献求助10
27秒前
小二郎应助林ci采纳,获得10
28秒前
28秒前
汉堡包应助ll采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740