Vehicle Detection in Multisource Remote Sensing Images Based on Edge-Preserving Super-Resolution Reconstruction

计算机科学 卷积神经网络 人工智能 遥感 计算机视觉 块(置换群论) 目标检测 特征(语言学) 过程(计算) 高分辨率 比例(比率) 模式识别(心理学) 地质学 地理 哲学 操作系统 地图学 语言学 数学 几何学
作者
Hong Zhu,Yanan Lv,Meng Jian,Yuxuan Liu,Liuru Hu,Jiaqi Yao,Xionghanxuan Lu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (17): 4281-4281 被引量:1
标识
DOI:10.3390/rs15174281
摘要

As an essential technology for intelligent transportation management and traffic risk prevention and control, vehicle detection plays a significant role in the comprehensive evaluation of the intelligent transportation system. However, limited by the small size of vehicles in satellite remote sensing images and lack of sufficient texture features, its detection performance is far from satisfactory. In view of the unclear edge structure of small objects in the super-resolution (SR) reconstruction process, deep convolutional neural networks are no longer effective in extracting small-scale feature information. Therefore, a vehicle detection network based on remote sensing images (VDNET-RSI) is constructed in this article. The VDNET-RSI contains a two-stage convolutional neural network for vehicle detection. In the first stage, a partial convolution-based padding adopts the improved Local Implicit Image Function (LIIF) to reconstruct high-resolution remote sensing images. Then, the network associated with the results from the first stage is used in the second stage for vehicle detection. In the second stage, the super-resolution module, detection heads module and convolutional block attention module adopt the increased object detection framework to improve the performance of small object detection in large-scale remote sensing images. The publicly available DIOR dataset is selected as the experimental dataset to compare the performance of VDNET-RSI with that of the state-of-the-art models in vehicle detection based on satellite remote sensing images. The experimental results demonstrated that the overall precision of VDNET-RSI reached 62.9%, about 6.3%, 38.6%, 39.8% higher than that of YOLOv5, Faster-RCNN and FCOS, respectively. The conclusions of this paper can provide a theoretical basis and key technical support for the development of intelligent transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WN发布了新的文献求助10
刚刚
鲈鱼完成签到,获得积分10
刚刚
磨人的老妖精完成签到,获得积分10
1秒前
火火完成签到,获得积分10
1秒前
yy完成签到,获得积分10
1秒前
pyrene完成签到 ,获得积分10
2秒前
公冶菲鹰发布了新的文献求助10
2秒前
热热完成签到,获得积分10
2秒前
zzz完成签到 ,获得积分10
2秒前
Jared应助黎黎采纳,获得10
3秒前
3秒前
3秒前
斯文败类应助XXXXX采纳,获得10
3秒前
阿芜完成签到,获得积分10
4秒前
LV发布了新的文献求助10
4秒前
qiuxiali123发布了新的文献求助10
4秒前
4秒前
CodeCraft应助miao采纳,获得10
4秒前
4秒前
LSW完成签到 ,获得积分10
5秒前
顾矜应助IF采纳,获得30
6秒前
咸鱼咸完成签到,获得积分10
6秒前
Kauio发布了新的文献求助10
6秒前
幸运鹅47完成签到,获得积分10
6秒前
orixero应助niagvbjkhsdfvc采纳,获得10
6秒前
hanyahui完成签到,获得积分10
7秒前
eliot完成签到,获得积分10
7秒前
7秒前
Zhao_Kai发布了新的文献求助10
7秒前
爆米花应助而风不止采纳,获得10
7秒前
坚强的紫菜完成签到,获得积分10
7秒前
熊风发布了新的文献求助10
8秒前
核桃完成签到,获得积分10
8秒前
see完成签到,获得积分10
8秒前
栀初完成签到,获得积分10
8秒前
LT发布了新的文献求助10
9秒前
9秒前
10秒前
热心市民余先生完成签到,获得积分10
10秒前
乐乐应助夕荀采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005