Vehicle Detection in Multisource Remote Sensing Images Based on Edge-Preserving Super-Resolution Reconstruction

计算机科学 卷积神经网络 人工智能 遥感 计算机视觉 块(置换群论) 目标检测 特征(语言学) 过程(计算) 高分辨率 比例(比率) 模式识别(心理学) 地质学 地理 哲学 操作系统 地图学 语言学 数学 几何学
作者
Hong Zhu,Yanan Lv,Meng Jian,Yuxuan Liu,Liuru Hu,Jiaqi Yao,Xionghanxuan Lu
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (17): 4281-4281 被引量:1
标识
DOI:10.3390/rs15174281
摘要

As an essential technology for intelligent transportation management and traffic risk prevention and control, vehicle detection plays a significant role in the comprehensive evaluation of the intelligent transportation system. However, limited by the small size of vehicles in satellite remote sensing images and lack of sufficient texture features, its detection performance is far from satisfactory. In view of the unclear edge structure of small objects in the super-resolution (SR) reconstruction process, deep convolutional neural networks are no longer effective in extracting small-scale feature information. Therefore, a vehicle detection network based on remote sensing images (VDNET-RSI) is constructed in this article. The VDNET-RSI contains a two-stage convolutional neural network for vehicle detection. In the first stage, a partial convolution-based padding adopts the improved Local Implicit Image Function (LIIF) to reconstruct high-resolution remote sensing images. Then, the network associated with the results from the first stage is used in the second stage for vehicle detection. In the second stage, the super-resolution module, detection heads module and convolutional block attention module adopt the increased object detection framework to improve the performance of small object detection in large-scale remote sensing images. The publicly available DIOR dataset is selected as the experimental dataset to compare the performance of VDNET-RSI with that of the state-of-the-art models in vehicle detection based on satellite remote sensing images. The experimental results demonstrated that the overall precision of VDNET-RSI reached 62.9%, about 6.3%, 38.6%, 39.8% higher than that of YOLOv5, Faster-RCNN and FCOS, respectively. The conclusions of this paper can provide a theoretical basis and key technical support for the development of intelligent transportation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助发文章12138采纳,获得10
1秒前
拼搏麦片完成签到,获得积分20
1秒前
1秒前
久念发布了新的文献求助10
1秒前
2秒前
零柒完成签到,获得积分20
2秒前
icey发布了新的文献求助20
2秒前
3秒前
4秒前
万类霜天竞自由完成签到,获得积分10
4秒前
12366666完成签到,获得积分10
4秒前
向北发布了新的文献求助10
5秒前
5秒前
Owen应助linnnna采纳,获得10
5秒前
5秒前
LL完成签到,获得积分10
5秒前
平常的冬萱给平常的冬萱的求助进行了留言
5秒前
范天问发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助30
6秒前
7秒前
龅牙苏发布了新的文献求助10
8秒前
8秒前
123456完成签到,获得积分20
8秒前
cldg完成签到,获得积分10
8秒前
8秒前
cjh发布了新的文献求助10
8秒前
王倩发布了新的文献求助10
10秒前
蒸盐粥发布了新的文献求助10
10秒前
yuu应助向北采纳,获得10
10秒前
10秒前
香蕉觅云应助泥石流采纳,获得10
11秒前
赘婿应助但行好事采纳,获得10
11秒前
发文章12138完成签到,获得积分10
11秒前
任全强完成签到,获得积分10
11秒前
11秒前
12秒前
yuan发布了新的文献求助10
12秒前
季思锐发布了新的文献求助10
12秒前
12秒前
拼搏麦片发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728317
求助须知:如何正确求助?哪些是违规求助? 5312368
关于积分的说明 15313794
捐赠科研通 4875546
什么是DOI,文献DOI怎么找? 2618882
邀请新用户注册赠送积分活动 1568431
关于科研通互助平台的介绍 1525095