YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection

无人机 计算机科学 目标检测 人工智能 特征提取 特征(语言学) 骨干网 精确性和召回率 计算机视觉 模式识别(心理学) 实时计算 计算机网络 语言学 哲学 遗传学 生物
作者
Xianxu Zhai,Huang Zhi-hua,Tao Li,Hanzheng Liu,Siyuan Wang
出处
期刊:Electronics [MDPI AG]
卷期号:12 (17): 3664-3664 被引量:31
标识
DOI:10.3390/electronics12173664
摘要

With the widespread use of UAVs in commercial and industrial applications, UAV detection is receiving increasing attention in areas such as public safety. As a result, object detection techniques for UAVs are also developing rapidly. However, the small size of drones, complex airspace backgrounds, and changing light conditions still pose significant challenges for research in this area. Based on the above problems, this paper proposes a tiny UAV detection method based on the optimized YOLOv8. First, in the detection head component, a high-resolution detection head is added to improve the device’s detection capability for small targets, while the large target detection head and redundant network layers are cut off to effectively reduce the number of network parameters and improve the detection speed of UAV; second, in the feature extraction stage, SPD-Conv is used to extract multi-scale features instead of Conv to reduce the loss of fine-grained information and enhance the model’s feature extraction capability for small targets. Finally, the GAM attention mechanism is introduced in the neck to enhance the model’s fusion of target features and improve the model’s overall performance in detecting UAVs. Relative to the baseline model, our method improves performance by 11.9%, 15.2%, and 9% in terms of P (precision), R (recall), and mAP (mean average precision), respectively. Meanwhile, it reduces the number of parameters and model size by 59.9% and 57.9%, respectively. In addition, our method demonstrates clear advantages in comparison experiments and self-built dataset experiments and is more suitable for engineering deployment and the practical applications of UAV object detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li应助奥特波顿采纳,获得20
刚刚
阿包完成签到 ,获得积分10
刚刚
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
NexusExplorer应助moncypool采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
kento应助科研通管家采纳,获得200
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
浅尝离白应助科研通管家采纳,获得30
2秒前
烟花应助科研通管家采纳,获得10
2秒前
浅尝离白应助科研通管家采纳,获得30
2秒前
田様应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
我是魔王完成签到,获得积分10
3秒前
3秒前
余问芙完成签到 ,获得积分10
4秒前
yijun完成签到,获得积分10
4秒前
酷波er应助小王快毕业采纳,获得30
5秒前
正电荷发布了新的文献求助10
5秒前
and999发布了新的文献求助10
6秒前
6秒前
ding应助明亮的智宸采纳,获得10
7秒前
yijun发布了新的文献求助10
7秒前
费飞扬发布了新的文献求助10
8秒前
9秒前
爆米花应助无异常采纳,获得10
9秒前
婷婷完成签到,获得积分10
10秒前
失眠的之桃完成签到 ,获得积分10
12秒前
搜集达人应助Kinsuo采纳,获得30
12秒前
zfy完成签到 ,获得积分10
12秒前
马超发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760