YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection

无人机 计算机科学 目标检测 人工智能 特征提取 特征(语言学) 骨干网 精确性和召回率 计算机视觉 模式识别(心理学) 实时计算 计算机网络 语言学 遗传学 生物 哲学
作者
Xianxu Zhai,Huang Zhi-hua,Tao Li,Hanzheng Liu,Siyuan Wang
出处
期刊:Electronics [MDPI AG]
卷期号:12 (17): 3664-3664 被引量:31
标识
DOI:10.3390/electronics12173664
摘要

With the widespread use of UAVs in commercial and industrial applications, UAV detection is receiving increasing attention in areas such as public safety. As a result, object detection techniques for UAVs are also developing rapidly. However, the small size of drones, complex airspace backgrounds, and changing light conditions still pose significant challenges for research in this area. Based on the above problems, this paper proposes a tiny UAV detection method based on the optimized YOLOv8. First, in the detection head component, a high-resolution detection head is added to improve the device’s detection capability for small targets, while the large target detection head and redundant network layers are cut off to effectively reduce the number of network parameters and improve the detection speed of UAV; second, in the feature extraction stage, SPD-Conv is used to extract multi-scale features instead of Conv to reduce the loss of fine-grained information and enhance the model’s feature extraction capability for small targets. Finally, the GAM attention mechanism is introduced in the neck to enhance the model’s fusion of target features and improve the model’s overall performance in detecting UAVs. Relative to the baseline model, our method improves performance by 11.9%, 15.2%, and 9% in terms of P (precision), R (recall), and mAP (mean average precision), respectively. Meanwhile, it reduces the number of parameters and model size by 59.9% and 57.9%, respectively. In addition, our method demonstrates clear advantages in comparison experiments and self-built dataset experiments and is more suitable for engineering deployment and the practical applications of UAV object detection systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哗啦啦啦完成签到,获得积分10
刚刚
1秒前
孤独的大灰狼完成签到 ,获得积分10
1秒前
超模咕咕鸡完成签到,获得积分10
2秒前
Cheng应助zh5841314525采纳,获得10
2秒前
2秒前
韩丹丹完成签到 ,获得积分10
3秒前
4秒前
5秒前
一一发布了新的文献求助10
5秒前
文艺小馒头完成签到,获得积分10
6秒前
ding应助欢喜自中采纳,获得10
6秒前
祝愿完成签到,获得积分10
6秒前
自信白凡完成签到,获得积分10
7秒前
哈哈哈完成签到,获得积分10
7秒前
8秒前
LihuaLu0417发布了新的文献求助10
8秒前
无限冷之完成签到,获得积分10
9秒前
Suc关闭了Suc文献求助
10秒前
Zcy31098完成签到,获得积分20
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
祝愿发布了新的文献求助10
11秒前
12秒前
搜集达人应助Ywr采纳,获得10
12秒前
炝拌维C完成签到,获得积分10
16秒前
赘婿应助LihuaLu0417采纳,获得10
19秒前
友好的大米完成签到,获得积分10
19秒前
20秒前
xiayil完成签到 ,获得积分10
21秒前
orixero应助Lucky小M采纳,获得10
21秒前
晨曦呢完成签到 ,获得积分10
22秒前
解惑大师完成签到 ,获得积分10
23秒前
清璃完成签到 ,获得积分10
24秒前
zty完成签到 ,获得积分10
25秒前
25秒前
rowena完成签到,获得积分10
25秒前
LihuaLu0417完成签到,获得积分10
26秒前
26秒前
zybbb完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539445
求助须知:如何正确求助?哪些是违规求助? 4626139
关于积分的说明 14598149
捐赠科研通 4567059
什么是DOI,文献DOI怎么找? 2503755
邀请新用户注册赠送积分活动 1481606
关于科研通互助平台的介绍 1453214