YOLO-Drone: An Optimized YOLOv8 Network for Tiny UAV Object Detection

无人机 计算机科学 目标检测 人工智能 特征提取 特征(语言学) 骨干网 精确性和召回率 计算机视觉 模式识别(心理学) 实时计算 计算机网络 语言学 哲学 遗传学 生物
作者
Xianxu Zhai,Huang Zhi-hua,Tao Li,Hanzheng Liu,Siyuan Wang
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (17): 3664-3664 被引量:31
标识
DOI:10.3390/electronics12173664
摘要

With the widespread use of UAVs in commercial and industrial applications, UAV detection is receiving increasing attention in areas such as public safety. As a result, object detection techniques for UAVs are also developing rapidly. However, the small size of drones, complex airspace backgrounds, and changing light conditions still pose significant challenges for research in this area. Based on the above problems, this paper proposes a tiny UAV detection method based on the optimized YOLOv8. First, in the detection head component, a high-resolution detection head is added to improve the device’s detection capability for small targets, while the large target detection head and redundant network layers are cut off to effectively reduce the number of network parameters and improve the detection speed of UAV; second, in the feature extraction stage, SPD-Conv is used to extract multi-scale features instead of Conv to reduce the loss of fine-grained information and enhance the model’s feature extraction capability for small targets. Finally, the GAM attention mechanism is introduced in the neck to enhance the model’s fusion of target features and improve the model’s overall performance in detecting UAVs. Relative to the baseline model, our method improves performance by 11.9%, 15.2%, and 9% in terms of P (precision), R (recall), and mAP (mean average precision), respectively. Meanwhile, it reduces the number of parameters and model size by 59.9% and 57.9%, respectively. In addition, our method demonstrates clear advantages in comparison experiments and self-built dataset experiments and is more suitable for engineering deployment and the practical applications of UAV object detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分20
刚刚
任性初夏发布了新的文献求助10
1秒前
st发布了新的文献求助10
1秒前
远荒发布了新的文献求助10
1秒前
1秒前
小二郎应助方小上采纳,获得10
2秒前
852应助qing采纳,获得10
2秒前
杨玉轩发布了新的文献求助10
2秒前
香蕉觅云应助鞠晓蕾采纳,获得10
3秒前
plusweng发布了新的文献求助10
3秒前
等月光落雪地完成签到,获得积分10
3秒前
浮游应助搜大有采纳,获得10
3秒前
浮游应助搜大有采纳,获得10
3秒前
浮游应助搜大有采纳,获得10
3秒前
科研通AI6应助搜大有采纳,获得10
3秒前
糖宝完成签到,获得积分10
4秒前
十三发布了新的文献求助10
4秒前
科目三应助莫封叶采纳,获得10
4秒前
paulmichael发布了新的文献求助10
4秒前
LD应助连衣裙采纳,获得10
4秒前
科研通AI6应助连衣裙采纳,获得10
4秒前
5秒前
慕青应助卡尔采纳,获得10
5秒前
crack完成签到,获得积分20
5秒前
群青发布了新的文献求助10
5秒前
科研通AI5应助波仔采纳,获得30
5秒前
SciGPT应助pandary采纳,获得10
6秒前
裘问薇应助白嫖论文采纳,获得10
6秒前
花叶发布了新的文献求助10
6秒前
英姑应助小柴胡采纳,获得30
7秒前
7秒前
况海霞发布了新的文献求助10
9秒前
个性的迎蓉完成签到,获得积分10
9秒前
荔枝发布了新的文献求助20
9秒前
Lyh应助夏堇采纳,获得10
10秒前
edhyjdtdm完成签到,获得积分20
11秒前
11秒前
徐徐发布了新的文献求助30
12秒前
12秒前
Jasper应助十三采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5028498
求助须知:如何正确求助?哪些是违规求助? 4264328
关于积分的说明 13293174
捐赠科研通 4072431
什么是DOI,文献DOI怎么找? 2227423
邀请新用户注册赠送积分活动 1235825
关于科研通互助平台的介绍 1160185